Intrinsically Germanium‐69‐Labeled Iron Oxide Nanoparticles: Synthesis and In‐Vivo Dual‐Modality PET/MR Imaging

Intrinsically germanium-69-labeled super-paramagnetic iron oxide nanoparticles are synthesized via a newly developed, fast and highly specific chelator-free approach. The biodistribution pattern and the feasibility of (69) Ge-SPION@PEG for in vivo dual-modality positron emission tomography/magnetic resonance (PET/MR) imaging and lymph-node mapping are investigated, which represents the first example of the successful utilization of a (69) Ge-based agent for PET/MR imaging.

[1]  Jan Grimm,et al.  Non-invasive mapping of deep-tissue lymph nodes in live animals using a multimodal PET/MRI nanoparticle , 2014, Nature Communications.

[2]  M. Meyerand,et al.  Chelator-free synthesis of a dual-modality PET/MRI agent. , 2013, Angewandte Chemie.

[3]  P. Padmanabhan,et al.  Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery , 2013, Theranostics.

[4]  PET/MRI: a new technology in the field of molecular imaging. , 2013, British medical bulletin.

[5]  Jia Guo,et al.  Magnetic Colloidal Supraparticles: Design, Fabrication and Biomedical Applications , 2013, Advanced materials.

[6]  Rubel Chakravarty,et al.  Long-term evaluation of 'BARC 68Ge/68Ga generator' based on the nanoceria-polyacrylonitrile composite sorbent. , 2013, Cancer Biotherapy and Radiopharmaceuticals.

[7]  M. Detmar,et al.  Molecular mechanisms and imaging of lymphatic metastasis. , 2013, Experimental cell research.

[8]  Rubel Chakravarty,et al.  Role of nanoporous materials in radiochemical separations for biomedical applications. , 2013, Journal of nanoscience and nanotechnology.

[9]  A. K. Tyagi,et al.  Development of a nano-zirconia based 68Ge/68Ga generator for biomedical applications. , 2011, Nuclear medicine and biology.

[10]  P. Riss,et al.  The renaissance of the ⁶⁸Ge/⁶⁸Ga radionuclide generator initiates new developments in ⁶⁸Ga radiopharmaceutical chemistry. , 2010, Current topics in medicinal chemistry.

[11]  Zhichuan J. Xu,et al.  Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles , 2010, Advanced materials.

[12]  A. K. Tyagi,et al.  Nanoceria-PAN composite-based advanced sorbent material: a major step forward in the field of clinical-grade 68Ge/68Ga generator. , 2010, ACS applied materials & interfaces.

[13]  Nadim Joni Shah,et al.  The current state, challenges and perspectives of MR-PET , 2010, NeuroImage.

[14]  P. Choyke,et al.  Nanoparticles in sentinel lymph node mapping. , 2009, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[15]  L. Tavlarides,et al.  Germanium(IV) adsorption from aqueous solution using a kelex-100 functional adsorbent , 2009 .

[16]  Tierui Zhang,et al.  A general approach for transferring hydrophobic nanocrystals into water. , 2007, Nano letters.

[17]  A. C. Hunter,et al.  Nanomedicine: current status and future prospects , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[18]  W. Yongxian,et al.  68Ge−68Ga generator with alpha-ferric oxide support in trigonal structure , 1998 .

[19]  S. Mirzadeh,et al.  Radiochemistry of germanium , 1996 .

[20]  M. A. Davis,et al.  Potential column chromatography generators for ionic Ga-68. I. Inorganic substrates. , 1979, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[21]  P. Kopecký,et al.  68Ge68Ga generator for the production of 68Ga in an ionic form , 1974 .