Semipolar $({\hbox{20}}\bar{{\hbox{2}}}\bar{{\hbox{1}}})$ InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting

This work examines the effects of polarization-related electric fields on the energy band diagrams, wavelength shift, wave function overlap, and efficiency droop for InGaN quantum wells on various crystal orientations, including polar (0001) (<i>c</i> -plane), semipolar (202̅1̅), semipolar (202̅1̅), and nonpolar (101̅0̅) (<i>m</i>-plane). Based on simulations, we show that the semipolar (202̅1̅) orientation exhibits excellent potential for the development of high-efficiency, low-droop light-emitting diodes (LEDs). We then present recent advancements in crystal growth, optical performance, and thermal performance of semipolar (202̅1̅) LEDs. Finally, we demonstrate a low-droop, high-efficiency single-quantum-well blue semipolar (202̅1̅) LED with an external quantum efficiency of more than 50% at 100 A/cm<sup>2</sup>.

[1]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[2]  Shuji Nakamura,et al.  Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm , 1997 .

[3]  A. Carlo,et al.  EFFECTS OF MACROSCOPIC POLARIZATION IN III-V NITRIDE MULTIPLE QUANTUM WELLS , 1999, cond-mat/9905186.

[4]  Shun Lien Chuang,et al.  CRYSTAL-ORIENTATION EFFECTS ON THE PIEZOELECTRIC FIELD AND ELECTRONIC PROPERTIES OF STRAINED WURTZITE SEMICONDUCTORS , 1999 .

[5]  M. Reiche,et al.  Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes , 2000, Nature.

[6]  Isamu Akasaki,et al.  Theoretical Study of Orientation Dependence of Piezoelectric Effects in Wurtzite Strained GaInN/GaN Heterostructures and Quantum Wells , 2000 .

[7]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[8]  Alexander I. Zhmakin,et al.  Simulation of visible and ultra-violet group-III nitride light emitting diodes , 2006, J. Comput. Phys..

[9]  A. Uedono,et al.  Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.

[10]  Michael R. Krames,et al.  Auger recombination in InGaN measured by photoluminescence , 2007 .

[11]  Mathew C. Schmidt,et al.  Study of nonpolar m-plane InGaN∕GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition , 2007 .

[12]  Michael R. Krames,et al.  Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A∕cm2 , 2007 .

[13]  Mathew C. Schmidt,et al.  High Power and High External Efficiency m-Plane InGaN Light Emitting Diodes , 2007 .

[14]  S. Karpov,et al.  Coupled Modeling of Current Spreading, Thermal Effects, and Light Extraction in Ill-Nitride Light-Emitting Diodes , 2007 .

[15]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[16]  Edward A. Preble,et al.  Green light emitting diodes on a-plane GaN bulk substrates , 2008 .

[17]  N. Grandjean,et al.  Effects of Polarization in Optoelectronic Quantum Structures , 2008 .

[18]  Michael R. Krames,et al.  Carrier distribution in (0001)InGaN∕GaN multiple quantum well light-emitting diodes , 2008 .

[19]  B. Hahn,et al.  A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes , 2009 .

[20]  J. Northrup GaN and InGaN(112̱2) surfaces: Group-III adlayers and indium incorporation , 2009 .

[21]  J. Piprek Efficiency droop in nitride‐based light‐emitting diodes , 2010 .

[22]  S. Denbaars,et al.  30-mW-Class High-Power and High-Efficiency Blue Semipolar (101̄1̄) InGaN/GaN Light-Emitting Diodes Obtained by Backside Roughening Technique , 2010 .

[23]  Hadis Morkoç,et al.  Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them , 2010 .

[24]  S. Denbaars,et al.  High-Efficiency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (2021) GaN Substrates , 2010 .

[25]  A. David,et al.  Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis , 2010 .

[26]  S. Denbaars,et al.  Continuous-Wave Operation of Pure Blue AlGaN-Cladding-Free Nonpolar InGaN/GaN Laser Diodes , 2010 .

[27]  Aurelien J. F. David,et al.  Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes , 2010 .

[28]  Jorg Hader,et al.  Density-activated defect recombination as a possible explanation for the efficiency droop in GaN-based diodes , 2010 .

[29]  D. S. Sizov,et al.  Carrier Transport in InGaN MQWs of Aquamarine- and Green-Laser Diodes , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Nelson Tansu,et al.  Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. , 2011, Optics express.

[31]  Michael Kneissl,et al.  Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells , 2011 .

[32]  K. Delaney,et al.  Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes , 2011 .

[33]  S. Denbaars,et al.  High-Power Blue-Violet Semipolar (202̄1̄) InGaN/GaN Light-Emitting Diodes with Low Efficiency Droop at 200 A/cm2 , 2011 .

[34]  Duncan Watson-Parris,et al.  Carrier Localization in InGaN/GaN Quantum Wells , 2011 .

[35]  H. Ryu,et al.  Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material , 2012 .

[36]  Qimin Yan,et al.  Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes , 2012 .

[37]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits: Coldren/Diode Lasers 2E , 2012 .

[38]  H. Morkoç,et al.  Impact of active layer design on InGaN radiative recombination coefficient and LED performance , 2012 .

[39]  Shinichi Tanaka,et al.  High-power, low-efficiency-droop semipolar (202̄1̄) single-quantum-well blue light-emitting diodes , 2012 .

[40]  E. Fred Schubert,et al.  Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities , 2012 .

[41]  Shinichi Tanaka,et al.  High-Power, Low-Efficiency-Droop Semipolar (2021) Single-Quantum-Well Blue Light-Emitting Diodes , 2012 .

[42]  S. Denbaars,et al.  Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices , 2012 .

[43]  S. Denbaars,et al.  Reduction in Thermal Droop Using Thick Single-Quantum-Well Structure in Semipolar (2021) Blue Light-Emitting Diodes , 2012 .

[44]  James S. Speck,et al.  Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure , 2012 .

[45]  S. Denbaars,et al.  Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells , 2012 .