A new PCA-based method for data compression and enhancement of multi-frequency polarimetric SAR imagery

A new PCA-based method for an optimal representation of multi-frequency polarimetric SAR images is proposed. The method performs the simultaneous diagonalization of the signal and multiplicative noise covariance matrices via one orthogonal matrix. The covariance matrix of the multiplicative noise becomes an identity matrix, which implies that the variance of the noise in each new image is unity, and is uncorrelated between transformed images. The covariance matrix of the SAR images is transformed to a diagonal matrix whose diagonal elements are ordered in decreasing value, which means that the new images are uncorrelated and will be ordered by their variances (qualities). The theoretical analysis and the implementation procedure of the method are given. The method has been applied on real SAR images. The compression ability of the method is proved via a reconstitution process of the original SAR images from a small number of new images with a minimal loss of information.

[1]  S. Quegan,et al.  Statistical models for polarimetric data: consequences, testing and validity , 1995 .

[2]  R. E. Roger A faster way to compute the noise-adjusted principal components transform matrix , 1994, IEEE Trans. Geosci. Remote. Sens..

[3]  Torbjørn Eltoft,et al.  Non-Gaussian signal statistics in ocean SAR imagery , 1998, IEEE Trans. Geosci. Remote. Sens..

[4]  J. Goodman Some fundamental properties of speckle , 1976 .

[5]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[6]  J. B. Lee,et al.  Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform , 1990 .

[7]  D. Vidal-Madjar,et al.  The use of radar backscattering signals for measuring soil moisture and surface roughness , 1995 .

[8]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[9]  Donald B. Percival,et al.  Probability density functions for multilook polarimetric signatures , 1994, IEEE Trans. Geosci. Remote. Sens..

[10]  Jong-Sen Lee,et al.  Principal components transformation of multifrequency polarimetric SAR imagery , 1992, IEEE Trans. Geosci. Remote. Sens..

[11]  G. Zyskind Introduction to Matrices with Applications in Statistics , 1970 .

[12]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[13]  B. L. Huneycutt,et al.  The SIR-C/X-SAR Synthetic Aperture Radar system , 1991, IEEE Trans. Geosci. Remote. Sens..

[14]  Diane L. Evans,et al.  Overview of results of Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR) , 1995, IEEE Trans. Geosci. Remote. Sens..

[15]  Corina da Costa Freitas,et al.  A model for extremely heterogeneous clutter , 1997, IEEE Trans. Geosci. Remote. Sens..

[16]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  Charles Elachi,et al.  Spaceborne Radar Remote Sensing: Applications and Techniques , 1987 .

[19]  Amrane Houacine,et al.  Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[20]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[21]  Robert W. Newcomb,et al.  On the simultaneous diagonalization of two semi-definite matrices , 1961 .

[22]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .