A comprehensive review on PEM water electrolysis

[1]  S. Trasatti,et al.  Water electrolysis : who first? , 1999 .

[2]  Gordon L. Nelson,et al.  Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures , 1998 .

[3]  S. Motoo,et al.  THE ELECTROCHEMICAL BEHAVIOR OF AD-ATOMS AND THEIR EFFECT ON HYDROGEN EVOLUTION. PART III. PLATINUM AD-ATOMS, ON GOLD, AND GOLD AD-ATOMS ON PLATINUM , 1978 .

[4]  S. Basu,et al.  Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production , 2011 .

[5]  D. Leung,et al.  Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant , 2008 .

[6]  M. Matsunaga,et al.  Effects of cathodizing on the morphology and composition of IrO2Ta2O5/Ti anodes , 2000 .

[7]  J. Schroers,et al.  Bulk metallic glass nanowire architecture for electrochemical applications. , 2011, ACS nano.

[8]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[9]  Mojtaba Khederzadeh,et al.  Wind power integrated with compressed air energy storage , 2010, 2010 IEEE International Conference on Power and Energy.

[10]  V. Antonucci,et al.  Investigation of IrO2 electrocatalysts prepared by a sulfite-couplex route for the O2 evolution reaction in solid polymer electrolyte water electrolyzers , 2011 .

[11]  S. Parry Abundance and distribution of palladium, platinum, iridium and gold in some oxide minerals , 1984 .

[12]  M. E. Lebbal,et al.  Identification and monitoring of a PEM electrolyser based on dynamical modelling , 2009 .

[13]  L. Hunt A History of Iridium OVERCOMING THE DIFFICULTIES OF MELTING AND FABRICATION , 1987 .

[14]  C. D. Pauli,et al.  Composite materials for electrocatalysis of O2 evolution: IrO2+SnO2 in acid solution , 2002 .

[15]  J. Schroers,et al.  Palladium nanostructures from multi-component metallic glass , 2012 .

[16]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[17]  Claude Etievant,et al.  Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis , 2009 .

[18]  D. Stolten,et al.  Ten years of operational experience with a hydrogen-based renewable energy supply system , 2003 .

[19]  Changpeng Liu,et al.  A novel hybrid based on carbon nanotubes and heteropolyanions as effective catalyst for hydrogen evolution , 2007 .

[20]  Ronghuan He,et al.  PBI‐Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration , 2004 .

[21]  Nikhil H. Jalani,et al.  Thermodynamics and Proton Transport in Nafion II. Proton Diffusion Mechanisms and Conductivity , 2005 .

[22]  Peter Meibom,et al.  Wind power impacts and electricity storage – A time scale perspective , 2012 .

[23]  O. Popovski,et al.  Preparation and characterization of Co–Ru/TiO2/MWCNTs electrocatalysts in PEM hydrogen electrolyzer , 2011 .

[24]  M. Yamaguchi,et al.  Development of high performance solid polymer electrolyte water electrolyzer in WE-NET , 1997, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203).

[25]  H. Salehfar,et al.  Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics , 2008 .

[26]  M. J. Khan,et al.  Dynamic modeling and simulation of a small wind–fuel cell hybrid energy system , 2005 .

[27]  Qingfeng Li,et al.  Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells , 2007 .

[28]  D. N. Buckley,et al.  The oxygen electrode. Part 5.—Enhancement of charge capacity of an iridium surface in the anodic region , 1975 .

[29]  S. Ivanchev Fluorinated proton-conduction nafion-type membranes, the past and the future , 2008 .

[30]  Karren L. More,et al.  Porosimetry of MEAs Made by “Thin Film Decal” Method and Its Effect on Performance of PEFCs , 2004 .

[31]  S. Sunde,et al.  Performance of a PEM water electrolysis cell using IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode , 2007 .

[32]  Yuh-Shan Ho,et al.  Gas diffusion layer for proton exchange membrane fuel cells—A review , 2009 .

[33]  Supramaniam Srinivasan,et al.  High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes , 1997 .

[34]  Everett B. Anderson,et al.  Initial Performance and Durability of Ultra-Low Loaded NSTF Electrodes for PEM Electrolyzers , 2011 .

[35]  F. Walsh,et al.  Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes , 2002 .

[36]  M. Laguna-Bercero Recent advances in high temperature electrolysis using solid oxide fuel cells: A review , 2012 .

[37]  S. Hwang,et al.  Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells , 2009 .

[38]  S. Trasatti,et al.  Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes , 1974 .

[39]  M. Fischedick,et al.  Perspektiven für den Ausbau der Wasserstoffinfrastruktur am Beispiel NRW , 2009 .

[40]  Werner Lehnert,et al.  Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers , 2009 .

[41]  B. Popov,et al.  Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation , 2009 .

[42]  Jens R. Rostrup-Nielsen,et al.  Hydrogen and Synthesis gas by Steam- and CO2 reforming , 2002 .

[43]  R. Keays,et al.  Abundance and distribution of gold, palladium and iridium in some spinel and garnet lherzolites: implications for the nature and origin of precious metal-rich intergranular components in the upper mantle , 1981 .

[44]  J. Schroers Processing of Bulk Metallic Glass , 2010, Advanced materials.

[45]  G. Ciccarella,et al.  Solid Polymer Electrolyte Water Electrolyser Based on Nafion‐TiO2 Composite Membrane for High Temperature Operation , 2009 .

[46]  John M Prausnitz,et al.  Water-Nafion equilibria. absence of Schroeder's paradox. , 2007, The journal of physical chemistry. B.

[47]  Gab-Jin Hwang,et al.  Application of polysulfone (PSf)– and polyether ether ketone (PEEK)–tungstophosphoric acid (TPA) composite membranes for water electrolysis , 2008 .

[48]  S. Basu,et al.  Nano-crystalline RuxSn1 − xO2 powder catalysts for oxygen evolution reaction in proton exchange membrane water electrolysers , 2011 .

[49]  Jens Oluf Jensen,et al.  Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes , 2010 .

[50]  G. Schmidt-naake,et al.  Modification of Nafion Membranes by Impregnation with Ionic Liquids , 2008 .

[51]  Shimshon Gottesfeld,et al.  Thin-film catalyst layers for polymer electrolyte fuel cell electrodes , 1992 .

[52]  A. Gedanken,et al.  The sonochemical synthesis and characterization of Cu1−xNixWO4 nanoparticles/nanorods and their application in electrocatalytic hydrogen evolution , 2009, Nanotechnology.

[53]  O. J. Murphy,et al.  THE OXYGEN ELECTRODE. PART 8. OXYGEN EVOLUTION AT RUTHENIUM DIOXIDE ANODES , 1977 .

[54]  V. Freger,et al.  Hydration of Nafion and Dowex in liquid and vapor environment: Schroeder's paradox and microstructure , 2008 .

[55]  Claude Etievant,et al.  GenHyPEM: A research program on PEM water electrolysis supported by the European Commission , 2009 .

[56]  Jianling Li,et al.  The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction , 2012 .

[57]  K. Onda,et al.  Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell , 2002 .

[58]  Pierre Millet,et al.  Solid polymer electrolyte water electrolysis: electrocatalysis and long-term stability , 1994 .

[59]  James F. McElroy,et al.  Recent advances in SPE® water electrolyzer , 1994 .

[60]  N. Briguglio,et al.  An electrochemical study of a PEM stack for water electrolysis , 2012 .

[61]  J. Weidner,et al.  Multimetallic Electrocatalysts of Pt, Ru, and Ir Supported on Anatase and Rutile TiO2 for Oxygen Evolution in an Acid Environment , 2011 .

[62]  R. Savinell,et al.  A Polymer Electrolyte for Operation at Temperatures up to 200°C , 1994 .

[63]  D. Mahajan,et al.  Metal bipolar plates for PEM fuel cell—A review , 2007 .

[64]  A. P. Fickett,et al.  Hydrogen Generation by Solid Polymer Electrolyte Water Electrolysis , 1975 .

[65]  F. Gutiérrez-Martín,et al.  Balancing the grid loads by large scale integration of hydrogen technologies: The case of the Spanish power system , 2012 .

[66]  Aaron T. Marshall,et al.  Electrochemical characterisation of IrxSn1−xO2 powders as oxygen evolution electrocatalysts , 2006 .

[67]  A. J. Peters,et al.  A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer , 2008 .

[68]  M. Debe,et al.  Stop-Start and High-Current Durability Testing of Nanostructured Thin Film Catalysts for PEM Fuel Cells , 2006 .

[69]  J. Bisquert,et al.  Separation of transport, charge storage and reaction processes of porous electrocatalytic IrO2 and IrO2/Nb2O5 electrodes , 2001 .

[70]  Claude Etievant,et al.  Electrochemical performances of PEM water electrolysis cells and perspectives , 2011 .

[71]  K. Yasuda,et al.  Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells , 2002 .

[72]  R. Kötz,et al.  XPS Studies of Oxygen Evolution on Ru and RuO2 Anodes , 1983 .

[73]  H. Takenaka,et al.  Solid polymer electrolyte water electrolysis , 1982 .

[74]  Yitung Chen,et al.  Numerical and experimental study of three-dimensional fluid flow in the bipolar plate of a PEM electrolysis cell , 2009 .

[75]  K. Scott,et al.  RuO 2 supported on Sb-doped SnO 2 nanoparticles for polymer electrolyte membrane water electrolysers , 2011 .

[76]  V. Bolobov Mechanism of Self-Ignition of Titanium Alloys in Oxygen , 2002 .

[77]  M. Weber,et al.  Wasserstoff - Speichermedium für Erneuerbare Energien , 2012 .

[78]  D. Bessarabov,et al.  A simple model for solid polymer electrolyte (SPE) water electrolysis , 2004 .

[79]  W. Dönitz,et al.  High-temperature electrolysis of water vapor—status of development and perspectives for application , 1985 .

[80]  Ioannis Chatzis,et al.  Permeability and electrical conductivity of porous media from 3D stochastic replicas of the microstructure , 2000 .

[81]  J. Benziger,et al.  Diffusion and interfacial transport of water in Nafion. , 2011, The journal of physical chemistry. B.

[82]  S. Motoo,et al.  The electrochemical behavior of ad-atoms and their effect on hydrogen evolution: Part IV. Tin and lead ad-atoms on platinum , 1979 .

[83]  Denis Roizard,et al.  On Schroeder's paradox , 2006 .

[84]  Sousso Kelouwani,et al.  Model for energy conversion in renewable energy system with hydrogen storage , 2005 .

[85]  H. Takenaka,et al.  Properties of Nafion membranes under PEM water electrolysis conditions , 2011 .

[86]  Everett B. Anderson,et al.  Research Advances towards Low Cost, High Efficiency PEM Electrolysis , 2010, ECS Transactions.

[87]  S. Bliznakov,et al.  Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis , 2007 .

[88]  Yitung Chen,et al.  Numerical Modeling of Two-Phase Flow in a Bipolar Plate of a PEM Electrolyzer Cell , 2008 .

[89]  Storage,et al.  Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage , 1977 .

[90]  S. Jensen,et al.  Highly efficient high temperature electrolysis , 2008 .

[91]  W. Grubb Ionic Migration in Ion-exchange Membranes , 1959 .

[92]  Zhixiang Liu,et al.  Study on a novel manufacturing process of membrane electrode assemblies for solid polymer electrolyte water electrolysis , 2007 .

[93]  D. N. Buckley,et al.  The oxygen electrode. Part 7.—Influence of some electrical and electrolyte variables on the charge capacity of iridium in the anodic region , 1976 .

[94]  S. Trasatti,et al.  Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions , 1975 .

[95]  C. Siegel Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells , 2008 .

[96]  G. Scherer,et al.  PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants , 1998 .

[97]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[98]  Carrie A. Farberow,et al.  Catalytic Activity of Platinum Monolayer on Iridium and Rhenium Alloy Nanoparticles for the Oxygen Reduction Reaction , 2012 .

[99]  C. Vayenas,et al.  The role of Nafion content in sputtered IrO2 based anodes for low temperature PEM water electrolysis , 2011 .

[100]  Didier Mayer,et al.  A new approach to empirical electrical modelling of a fuel cell, an electrolyser or a regenerative fuel cell , 2004 .

[101]  J. Kallitsis,et al.  Proton conducting membranes based on blends of PBI with aromatic polyethers containing pyridine units , 2005 .

[102]  N. Bjerrum,et al.  Corrosion behaviour of construction materials for high temperature steam electrolysers , 2011 .

[103]  J. S. Lee,et al.  Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction , 2009 .

[104]  I. Honma,et al.  Metallic ruthenium incorporation in the porous structure of SBA-15 using a sonochemical method , 2003 .

[105]  Jocelyn Wishart,et al.  Computational design and optimization of fuel cells and fuel cell systems: A review , 2011 .

[106]  Henri Poincark Characterization of membrane-electrode assemblies for solid polymer electrolyte water electrolysis , 2022 .

[107]  A. Weber,et al.  Modeling transport in polymer-electrolyte fuel cells. , 2004, Chemical reviews.

[108]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[109]  D. Aili,et al.  Phosphoric acid doped membranes based on Nafion , PBI and their blends Membrane preparation, char , 2011 .

[110]  M. Péra,et al.  Multiphysics simulation of a PEM electrolyser: Energetic Macroscopic Representation approach , 2011 .

[111]  Pierre Millet,et al.  Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media , 2007 .

[112]  H. Gorgun Dynamic modelling of a proton exchange membrane (PEM) electrolyzer , 2006 .

[113]  J. M. Sedlak,et al.  Advances in oxygen evolution catalysis in solid polymer electrolyte water electrolysis , 1981 .

[114]  N. Guillet,et al.  Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction , 2012 .

[115]  Michael F Toney,et al.  Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. , 2010, Nature chemistry.

[116]  J. Schroers,et al.  Bulk Metallic Glass: The Smaller the Better , 2011, Advanced materials.

[117]  S. Ardizzone,et al.  Composite ternary SnO2-IrO2-Ta2O5 oxide electrocatalysts , 2006 .

[118]  Yitung Chen,et al.  Numerical modeling of three-dimensional two-phase gas–liquid flow in the flow field plate of a PEM electrolysis cell , 2010 .

[119]  S. Motoo,et al.  The electrochemical behavior of ad-atoms and their effect on hydrogen evolution: Part V. Selenium ad-atoms on gold , 1979 .

[120]  A. Damjanović,et al.  Electrode Kinetics of Oxygen Evolution and Dissolution on Rh, Ir, and Pt‐Rh Alloy Electrodes , 1966 .

[121]  Jens R. Rostrup-Nielsen,et al.  Hydrogen and Synthesis Gas by Steam‐ and CO2 Reforming , 2003 .

[122]  S. Grigoriev,et al.  Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers , 2008 .

[123]  Qingfeng Li,et al.  Cross-Linked Polybenzimidazole Membranes for Fuel Cells , 2007 .

[124]  S. Grigoriev,et al.  Cell failure mechanisms in PEM water electrolyzers , 2012 .

[125]  B. Yi,et al.  Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers , 2008 .

[126]  J. Raoof,et al.  Fabrication of bimetallic Cu/Pt nanoparticles modified glassy carbon electrode and its catalytic activity toward hydrogen evolution reaction , 2010 .

[127]  A. Marshall,et al.  Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis , 2007 .

[128]  张华民,et al.  Preparation of Ir0.4Ru0.6MoxOy for oxygen evolution by modified Adams fusion method , 2009 .

[129]  Ji-Ming Hu,et al.  Degradation mechanism of long service life Ti/IrO2–Ta2O5 oxide anodes in sulphuric acid , 2002 .

[130]  L. Burke,et al.  Oxygen electrode reaction. Part 1.—Nature of the inhibition process , 1971 .

[131]  Li Xu,et al.  SPE water electrolysis with SPEEK/PES blend membrane , 2010 .

[132]  Pierre Millet,et al.  Design and performance of a solid polymer electrolyte water electrolyzer , 1996 .

[133]  Amy Q. Shen,et al.  Parking the power: Strategies and physical limitations for bulk energy storage in supply–demand matching on a grid whose input power is provided by intermittent sources , 2009 .

[134]  S. Han,et al.  Hydrogen production by water electrolysis using solid polymer electrolyte , 2002 .

[135]  N. Briguglio,et al.  Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst , 2010 .

[136]  V. Antonucci,et al.  Nanosized IrO2 electrocatalysts for oxygen evolution reaction in an SPE electrolyzer , 2011 .

[137]  D. N. Buckley,et al.  The oxygen electrode. Part 6.—Oxygen evolution and corrosion at iridium anodes , 1976 .

[138]  B. Viswanathan,et al.  Facile Hydrogen Evolution Reaction on WO3 Nanorods a full pdf document , 2007 .

[139]  M. Miles,et al.  Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric Studies , 1976 .

[140]  Keith Scott,et al.  Solid Acids as Electrolyte Materials for Proton Exchange Membrane (PEM) Electrolysis: Review , 2012 .

[141]  W. T. Grubb Batteries with Solid Ion Exchange Electrolytes I . Secondary Cells Employing Metal Electrodes , 1959 .

[142]  J.P. Barton,et al.  Energy storage and its use with intermittent renewable energy , 2004, IEEE Transactions on Energy Conversion.

[143]  S. A. Grigor’ev,et al.  Electrolysis of Water in a System with a Solid Polymer Electrolyte at Elevated Pressure , 2001 .

[144]  Manos Mavrikakis,et al.  Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. , 2008, Nature materials.

[145]  F. Nart,et al.  Preparation of platinum–ruthenium alloys supported on carbon by a sonochemical method , 2007 .

[146]  C. D. Pauli,et al.  Electrochemical surface characterization of IrO 2 + SnO 2 mixed oxide electrocatalysts , 1995 .

[147]  K. Bouzek,et al.  Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers , 2012 .

[148]  Tetsuya Yoshida,et al.  Effect of titanium powder loading in gas diffusion layer of a polymer electrolyte unitized reversible fuel cell , 2012 .

[149]  C. Kontoyannis,et al.  Development and Characterization of Acid-Doped Polybenzimidazole/Sulfonated Polysulfone Blend Polymer Electrolytes for Fuel Cells , 2001 .

[150]  S. Grigoriev,et al.  Mathematical modeling of high-pressure PEM water electrolysis , 2010 .

[151]  Surya R. Kalidindi,et al.  Selection of representative volume elements for pore-scale analysis of transport in fuel cell materials , 2012 .

[152]  S. Machado,et al.  Influence of the preparation method on the morphological and electrochemical properties of Ti/IrO2-coated electrodes , 2000 .

[153]  D. Leung,et al.  A review on reforming bio-ethanol for hydrogen production , 2007 .

[154]  L. Burke,et al.  The oxygen electrode. Part 3.—Inhibition of the oxygen evolution reaction , 1972 .

[155]  Martin S. Miller,et al.  A review of polymer electrolyte membrane fuel cell stack testing , 2011 .

[156]  S. Grigoriev,et al.  Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis , 2011 .

[157]  S. Trasatti,et al.  Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour , 1971 .

[158]  E. Médici,et al.  The Effects of Morphological and Wetting Properties of Porous Transport Layers on Water Movement in PEM Fuel Cells , 2010 .

[159]  Pierre Millet,et al.  Optimization of porous current collectors for PEM water electrolysers , 2009 .

[160]  R. Shriner,et al.  PLATINUM OXIDE AS A CATALYST IN THE REDUCTION OF ORGANIC COMPOUNDS. III. PREPARATION AND PROPERTIES OF THE OXIDE OF PLATINUM OBTAINED BY THE FUSION OF CHLOROPLATINIC ACID WITH SODIUM NITRATE1 , 1923 .

[161]  S. Trasatti,et al.  Ruthenium dioxide-based film electrodes , 1978 .

[162]  S. Stucki,et al.  Ruthenium dioxide as a hydrogen-evolving cathode , 1987 .

[163]  P. Lu,et al.  Advances in water electrolysis technology with emphasis on use of the solid polymer electrolyte , 1979 .

[164]  I. Chorkendorff,et al.  Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution , 2005 .

[165]  K. Scott,et al.  The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance , 2010 .

[166]  D. T. Swift-Hook,et al.  The value of storage on power systems with intermittent energy sources , 1994 .

[167]  S. Hsu,et al.  Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells , 2011 .

[168]  M. Kouřil,et al.  Corrosion rate of construction materials in hot phosphoric acid with the contribution of anodic polarization , 2012 .

[169]  Hiroyuki Uchida,et al.  Self‐Humidifying Polymer Electrolyte Membranes for Fuel Cells , 1996 .

[170]  S. Motoo,et al.  THE ELECTROCHEMICAL BEHAVIOUR OF AD-ATOMS AND THEIR EFFECT ON HYDROGEN EVOLUTION. PART 4. TIN AND LEAD AD-ATOMS ON PLATINUM , 1979 .

[171]  F. Barbir PEM electrolysis for production of hydrogen from renewable energy sources , 2005 .

[172]  Pierre Millet,et al.  Scientific and engineering issues related to PEM technology: Water electrolysers, fuel cells and unitized regenerative systems , 2011 .

[173]  Brant A. Peppley,et al.  A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells , 2004 .

[174]  L. Burke,et al.  Oxygen electrode reaction. Part 2.—Behaviour at ruthenium black electrodes , 1972 .

[175]  M. Santarelli,et al.  Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production , 2009 .

[176]  Changpeng Liu,et al.  Study of ruthenium oxide catalyst for electrocatalytic performance in oxygen evolution , 2006 .

[177]  B. Yi,et al.  An Improved Catalyst-Coated Membrane Structure for PEM Water Electrolyzer , 2007 .

[178]  J. Kerres,et al.  Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells , 1999 .

[179]  Pierre Millet,et al.  New solid polymer electrolyte composites for water electrolysis , 1989 .

[180]  C. Roth,et al.  A novel electrocatalyst support with proton conductive properties for polymer electrolyte membrane fuel cell applications , 2009 .

[181]  Greg F. Naterer,et al.  Synergistic roles of off-peak electrolysis and thermochemical production of hydrogen from nuclear energy in Canada , 2008 .

[182]  Egil Rasten Electrocatalysis in water electrolysis with solid polymerelectrolyte , 2003 .

[183]  Jeanette E. Owejan,et al.  Gas diffusion layer for fuel cells , 2008 .

[184]  Huamin Zhang,et al.  Study of IrxRu1−xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis , 2009 .

[185]  Li Xu,et al.  The stability of MEA in SPE water electrolysis for hydrogen production , 2010 .

[186]  C. Iwakura,et al.  Anodic evolution of oxygen on ruthenium in acidic solutions , 1977 .

[187]  O. J. Murphy,et al.  The oxygen electrode. Part 8.—Oxygen evolution at ruthenium dioxide anodes , 1977 .

[188]  V. Antonucci,et al.  High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser , 2008 .

[189]  S. M. Javaid Zaidi,et al.  Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate , 2005 .

[190]  Adam Z. Weber,et al.  Modeling Transport in Polymer‐Electrolyte Fuel Cells , 2004 .

[191]  David L. Fritz,et al.  An implementation of a phenomenological evaporation model into a porous network simulation for water management in low temperature fuel cells , 2012 .

[192]  A. Marshall,et al.  Preparation and characterisation of nanocrystalline IrxSn1−xO2 electrocatalytic powders , 2005 .

[193]  Guohua Chen,et al.  Electrochemical Behavior of Novel Ti/IrOx−Sb2O5−SnO2 Anodes , 2002 .

[194]  Spatially Resolved Contact Pressure and Contact Resistance Measurements at the Gas Diffusion Layer: A Tool for PEM Fuel Cell Development , 2012 .

[195]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[196]  R. Russell,et al.  Corrosion of the Ruthenium Oxide Catalyst at the Anode of a Solid Polymer Electrolyte Cell , 1978 .

[197]  M. Mench,et al.  Investigation of bipolar plate and diffusion media interfacial structure in PEFCs: A fractal geometry approach , 2011 .

[198]  Wei Zhao,et al.  Synthesis and characterization of novel high-performance composite electrocatalysts for the oxygen evolution in solid polymer electrolyte (SPE) water electrolysis ☆ , 2012 .

[199]  M. Mathe,et al.  Hydrogen evolution reaction on single crystal WO3/C nanoparticles supported on carbon in acid and alkaline solution , 2011 .

[200]  D. Stolten,et al.  Pseudo-half-cell measurements on symmetrical catalyst-coated membranes and their relevance for optimizing DMFC anodes , 2009 .

[201]  Massimo Santarelli,et al.  Analysis of water transport in a high pressure PEM electrolyzer , 2010 .

[202]  A. Weber,et al.  Macroscopic Modeling of Polymer-Electrolyte Membranes , 2007 .

[203]  Viral S. Mehta,et al.  Review and analysis of PEM fuel cell design and manufacturing , 2003 .

[204]  Xin-dong Wang,et al.  A novel catalyst layer with hydrophilic―hydrophobic meshwork and pore structure for solid polymer electrolyte water electrolysis , 2011 .

[205]  S. Grigoriev,et al.  PEM water electrolyzers: From electrocatalysis to stack development , 2010 .

[206]  B. Emonts,et al.  Explosion Limits of Hydrogen/Oxygen Mixtures at Initial Pressures up to 200 bar , 2004 .

[207]  N. A. Deskins,et al.  Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction. , 2011, Journal of the American Chemical Society.

[208]  B. Gunn,et al.  The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80°C in acid solutions , 1978 .

[209]  R. García‐Valverde,et al.  Simple PEM water electrolyser model and experimental validation , 2012 .

[210]  E. Roth,et al.  Obtention and evaluation of polyethylene-based solid polymer electrolyte membranes for hydrogen production☆ , 1982 .

[211]  Pablo Sanchis,et al.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends , 2012, Proceedings of the IEEE.

[212]  E. Médici,et al.  Scaling percolation in thin porous layers , 2011 .

[213]  Ronghuan He,et al.  Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors , 2003 .

[214]  Wei Zhou,et al.  PtRu nanoparticle electrocatalyst with bulk alloy properties prepared through a sonochemical method. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[215]  S. Motoo,et al.  The electrochemical behavior of ad-atoms and their effect on hydrogen evolution: Part I. Order-disorder rearrangement of copper ad-atoms on platinum , 1976 .

[216]  D. N. Buckley,et al.  The oxygen electrode , 1974 .

[217]  R. Kötz,et al.  Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media , 1986 .

[218]  H. Salehfar,et al.  Semiempirical Model for Determining PEM Electrolyzer Stack Characteristics , 2006 .

[219]  Qingfeng Li,et al.  Partially Fluorinated Arylene Polyethers and Their Ternary Blend Membranes with PBI and H3PO4. Part I. Synthesis and Characterisation of Polymers and Binary Blend Membranes , 2008 .