Chemical genomics with pyrvinium identifies C1orf115 as a regulator of drug efflux

[1]  Zhengshuang Xu,et al.  Biguanide MC001, a Dual Inhibitor of OXPHOS and Glycolysis, Shows Enhanced Antitumor Activity Without Increasing Lactate Production , 2022, ChemMedChem.

[2]  Anne-Claude Gingras,et al.  Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism , 2020, Nature metabolism.

[3]  M. Pajic,et al.  Systematic functional identification of cancer multi-drug resistance genes , 2020, Genome Biology.

[4]  John G Doench,et al.  A Compendium of Genetic Modifiers of Mitochondrial Dysfunction Reveals Intra-organelle Buffering , 2019, Cell.

[5]  D. Durocher,et al.  Identifying chemogenetic interactions from CRISPR screens with drugZ , 2019, Genome Medicine.

[6]  J. Moffat,et al.  Global Genetic Networks and the Genotype-to-Phenotype Relationship , 2019, Cell.

[7]  M. Pufall,et al.  Mechanistic Investigation of the Androgen Receptor DNA-Binding Domain Inhibitor Pyrvinium , 2019, ACS omega.

[8]  I. Gérin,et al.  Phosphoglycolate has profound metabolic effects but most likely no role in a metabolic DNA response in cancer cell lines , 2019, The Biochemical journal.

[9]  M. Snuderl,et al.  Publisher Correction: Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours , 2018, Nature Cell Biology.

[10]  A. Lánczky,et al.  Author Correction: Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets , 2018, Scientific Reports.

[11]  N. Perrimon,et al.  Efficient proximity labeling in living cells and organisms with TurboID , 2018, Nature Biotechnology.

[12]  A. Lánczky,et al.  Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets , 2018, Scientific Reports.

[13]  M. V. Vander Heiden,et al.  Aspartate is an endogenous metabolic limitation for tumour growth , 2018, Nature Cell Biology.

[14]  M. Snuderl,et al.  Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumors , 2018, Nature Cell Biology.

[15]  Juan Zhao,et al.  Pyrvinium Sensitizes Clear Cell Renal Cell Carcinoma Response to Chemotherapy Via Casein Kinase 1&agr;‐Dependent Inhibition of Wnt/&bgr;‐Catenin , 2017, The American journal of the medical sciences.

[16]  H. Moses,et al.  Pharmacologic Inhibition of β-Catenin With Pyrvinium Inhibits Murine and Human Models of Wilms Tumor , 2017, Oncology research.

[17]  Yizhi Liu,et al.  Inhibitory effect of pyrvinium pamoate on uveal melanoma cells involves blocking of Wnt/&bgr;-catenin pathway , 2017, Acta biochimica et biophysica Sinica.

[18]  M. Prentki,et al.  Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases. , 2017, Biochimie.

[19]  D. Durocher,et al.  Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens , 2017, G3: Genes, Genomes, Genetics.

[20]  Eric S. Lander,et al.  Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras , 2017, Cell.

[21]  Zhenge Zhang,et al.  Targeting of Wnt/β-Catenin by Anthelmintic Drug Pyrvinium Enhances Sensitivity of Ovarian Cancer Cells to Chemotherapy , 2017, Medical science monitor : international medical journal of experimental and clinical research.

[22]  A. Gingras,et al.  Parallel Exploration of Interaction Space by BioID and Affinity Purification Coupled to Mass Spectrometry. , 2017, Methods in molecular biology.

[23]  Hans Clevers,et al.  Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors , 2016, Nature Medicine.

[24]  John G Doench,et al.  A Genome-wide CRISPR Death Screen Identifies Genes Essential for Oxidative Phosphorylation. , 2016, Cell metabolism.

[25]  D. Vertommen,et al.  A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. , 2016, Nature Chemical Biology.

[26]  Navdeep S. Chandel,et al.  Fundamentals of cancer metabolism , 2016, Science Advances.

[27]  M. Prentki,et al.  Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes , 2016, Proceedings of the National Academy of Sciences.

[28]  D. Durocher,et al.  High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities , 2015, Cell.

[29]  G. Traver Hart,et al.  BAGEL: a computational framework for identifying essential genes from pooled library screens , 2015, BMC Bioinformatics.

[30]  C. Chuah,et al.  Pyrvinium selectively targets blast phase-chronic myeloid leukemia through inhibition of mitochondrial respiration , 2015, Oncotarget.

[31]  B. Andrews,et al.  Rapid and Efficient Plasmid Construction by Homologous Recombination in Yeast. , 2015, Cold Spring Harbor protocols.

[32]  M. V. Heiden,et al.  Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells , 2015, Cell.

[33]  B. Doble,et al.  Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor–Initiating Cells , 2015, Clinical Cancer Research.

[34]  D. Sabatini,et al.  An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis , 2015, Cell.

[35]  M. Pollak,et al.  Metformin directly acts on mitochondria to alter cellular bioenergetics , 2014, Cancer & metabolism.

[36]  Ethan Lee,et al.  Repurposing the FDA-Approved Pinworm Drug Pyrvinium as a Novel Chemotherapeutic Agent for Intestinal Polyposis , 2014, PLoS ONE.

[37]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[38]  Andrea Glasauer,et al.  Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis , 2014, eLife.

[39]  J. Moffat,et al.  Measuring error rates in genomic perturbation screens: gold standards for human functional genomics , 2014, bioRxiv.

[40]  D. Sabatini,et al.  Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides , 2014, Nature.

[41]  L. Kazdová,et al.  Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties. , 2014, Physiological research.

[42]  J. Schultz,et al.  Evolutionary and Structural Analyses of Mammalian Haloacid Dehalogenase-type Phosphatases AUM and Chronophin Provide Insight into the Basis of Their Different Substrate Specificities* , 2013, The Journal of Biological Chemistry.

[43]  G. Poda,et al.  Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system , 2013, Nucleic acids research.

[44]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[45]  N. Nakamichi,et al.  Role of organic cation/carnitine transporter 1 in uptake of phenformin and inhibitory effect on complex I respiration in mitochondria. , 2013, Toxicological sciences : an official journal of the Society of Toxicology.

[46]  Y. Harada,et al.  Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. , 2012, Cancer letters.

[47]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[48]  Marc Prentki,et al.  Glycerolipid/free fatty acid cycle and islet β-cell function in health, obesity and diabetes , 2012, Molecular and Cellular Endocrinology.

[49]  R. Altman,et al.  Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). , 2011, Pharmacogenetics and genomics.

[50]  Bruce J. Melancon,et al.  Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. , 2010, Nature chemical biology.

[51]  Lawrence Lum,et al.  Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer , 2008, Nature chemical biology.

[52]  Eyal Gottlieb,et al.  TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis , 2006, Cell.

[53]  J. Strathern,et al.  Methods in yeast genetics : a Cold Spring Harbor Laboratory course manual , 2005 .

[54]  A. Matsuno-Yagi,et al.  Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae. , 1999, Biochimica et biophysica acta.

[55]  G. H. Reed,et al.  ATP-dependent phosphorylation of α-substituted carboxylic acids catalyzed by pyruvate kinase , 1984 .

[56]  J. Beck,et al.  The treatment of pinworm infections in humans (enterobiasis) with pyrvinium chloride and pyrvinium pamoate. , 1959, The American journal of tropical medicine and hygiene.