Linking thermal imaging to physiological indicators in Carica papaya L. under different watering regimes

[1]  E. D. Sousa,et al.  Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) effects on stomatal conductance, growth, photosynthetic capacity, and water-use efficiency of papaya☆ , 2015 .

[2]  H. Medrano,et al.  Validation of thermal indices for water status identification in grapevine , 2014 .

[3]  M. M. Chaves,et al.  Thermography to explore plant-environment interactions. , 2013, Journal of experimental botany.

[4]  S. Tyerman,et al.  Computational water stress indices obtained from thermal image analysis of grapevine canopies , 2012, Irrigation Science.

[5]  M. M. Chaves,et al.  Grapevine varieties exhibiting differences in stomatal response to water deficit. , 2012, Functional plant biology : FPB.

[6]  Tao Zhang,et al.  On the Increased Frequency of Mediterranean Drought , 2012 .

[7]  Iván Francisco García-Tejero,et al.  Water and Sustainable Agriculture , 2011 .

[8]  Iván Francisco García-Tejero,et al.  Linking canopy temperature and trunk diameter fluctuations with other physiological water status tools for water stress management in citrus orchards. , 2011, Functional plant biology : FPB.

[9]  H. Jones,et al.  Remote Sensing of Vegetation: Principles, Techniques, and Applications , 2010 .

[10]  M. M. Chaves,et al.  Grapevine under deficit irrigation: hints from physiological and molecular data. , 2010, Annals of botany.

[11]  C. N. Hodges,et al.  Radically Rethinking Agriculture for the 21st Century , 2010, Science.

[12]  H. Jones,et al.  Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. , 2009, Functional plant biology : FPB.

[13]  Yafit Cohen,et al.  Evaluating water stress in irrigated olives: correlation of soil water status, tree water status, and thermal imagery , 2009, Irrigation Science.

[14]  Gustavo A. Slafer,et al.  Breeding for Yield Potential and Stress Adaptation in Cereals , 2008 .

[15]  Stephen M. Mount,et al.  The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) , 2008, Nature.

[16]  E. Campostrini,et al.  Ecophysiology of papaya: a review , 2007 .

[17]  X. Vanrobaeys,et al.  Early detection of nutrient and biotic stress in Phaseolus vulgaris , 2007 .

[18]  A. Gómez-Cadenas,et al.  Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering , 2007, Plant Growth Regulation.

[19]  João Maroco,et al.  Deficit irrigation in grapevine improves water‐use efficiency while controlling vigour and production quality , 2007 .

[20]  H. Jones,et al.  Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. , 2006, Journal of experimental botany.

[21]  Y. Cohen,et al.  Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. , 2006, Journal of experimental botany.

[22]  Maria Manuela Chaves,et al.  Optimizing thermal imaging as a technique for detecting stomatal closure induced by drought stress under greenhouse conditions , 2006 .

[23]  M. Talón,et al.  Responses of Papaya Seedlings (Carica papaya L.) to Water Stress and Re-Hydration: Growth, Photosynthesis and Mineral Nutrient Imbalance , 2006, Plant and Soil.

[24]  D. Hagenbeek,et al.  Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. , 2004, Plant & cell physiology.

[25]  J. Pereira,et al.  Understanding plant responses to drought - from genes to the whole plant. , 2003, Functional plant biology : FPB.

[26]  Manfred Stoll,et al.  Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. , 2002, Journal of experimental botany.

[27]  S. Wilkinson,et al.  Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. , 2002, The New phytologist.

[28]  Wim G.M. Bastiaanssen,et al.  Irrigation water distribution and long-term effects on crop and environment , 2001 .

[29]  Hamlyn G. Jones,et al.  Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling , 1999 .

[30]  T. Marler,et al.  Drought, Leaf Gas Exchange, and Chlorophyll Fluorescence of Field-grown Papaya , 1998 .

[31]  T. Marler,et al.  Drought Stress Influences Gas-exchange Responses of Papaya Leaves to Rapid Changes in Irradiance , 1996 .

[32]  B. Schaffer,et al.  Handbook of Environmental Physiology of Fruit Crops , 1994 .

[33]  Herbert Kaplan,et al.  Practical Applications of Infrared Thermal Sensing and Imaging Equipment , 1993 .

[34]  Park S. Nobel,et al.  Physicochemical and Environmental Plant Physiology , 1991 .

[35]  William P. Kustas,et al.  A reexamination of the crop water stress index , 1988, Irrigation Science.

[36]  O. Babalola,et al.  Growth, development and yield of pawpaw (Carica papaya L.) ‘Homestead selection’ in response to soil moisture stress , 1986, Plant and Soil.

[37]  Sherwood B. Idso,et al.  Non-water-stressed baselines: A key to measuring and interpreting plant water stress , 1982 .

[38]  C. Neinhuis,et al.  How to become a tree without wood--biomechanical analysis of the stem of Carica papaya L. , 2014, Plant biology.

[39]  J. Fernández,et al.  Aplicaciones de la termografía de infrarrojos en la agricultura moderna , 2014 .

[40]  Boshra,et al.  Papaya - An Innovative Raw Material for Food and Pharmaceutical Processing Industry , 2013 .

[41]  Maneesh Mishra,et al.  CARICA PAPAYA L.) , 2007 .

[42]  H. Jones Application of Thermal Imaging and Infrared Sensing in Plant Physiology and Ecophysiology , 2004 .

[43]  K. Srinivas Plant water relations, yield, and water use of papaya (Carica papaya L.) at different evaporation-replenishment rates under drip irrigation , 1996 .

[44]  H. Nilsson Remote sensing and image analysis in plant pathology. , 1995, Annual review of phytopathology.

[45]  R. Jackson Canopy Temperature and Crop Water Stress , 1982 .

[46]  S. Idso,et al.  Normalizing the stress-degree-day parameter for environmental variability☆ , 1981 .