Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films

Applications of the ferroelectric materials for the information storage necessitate the understanding of local switching behavior on the level of individual grains and microstructural elements. In particular, implementation of multilevel neuromorphic elements requires the understanding of history-dependent polarization responses. Here, we introduce the spatially resolved approach for mapping local Preisach densities in polycrystalline ferroelectrics based on first-order reversal curve (FORC) measurements over spatially resolved grid by piezoresponse force spectroscopy using tip-electrode. The band excitation approach allowed effective use of cantilever resonances to amplify weak piezoelectric signal and also provided insight in position-, voltage-, and voltage history-dependent mechanical properties of the tip-surface contact. Several approaches for visualization and comparison of the multidimensional data sets formed by FORC families or Preisach densities at each point are introduced and compared. The relationship between switching behavior and microstructure is analyzed.

[1]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoresponse force microscopy , 2004, cond-mat/0408223.

[2]  S. Kalinin,et al.  Dual-frequency resonance-tracking atomic force microscopy , 2007 .

[3]  Anthony B. Kos,et al.  Nanomechanical mapping with resonance tracking scanned probe microscope , 2007 .

[4]  E. Dahlberg,et al.  Modelling the irreversible response of magnetically ordered materials: a Preisach-based approach , 2001 .

[5]  R. Ramesh,et al.  High speed piezoresponse force microscopy: <1 frame per second nanoscale imaging , 2008 .

[6]  Ute Rabe,et al.  Acoustic microscopy by atomic force microscopy , 1994 .

[7]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures , 2009 .

[8]  Stephen Jesse,et al.  Quantitative mapping of switching behavior in piezoresponse force microscopy , 2006 .

[9]  E. Altman,et al.  Comparison of the reactivity of bulk and surface oxides on Pd(100) , 2008 .

[10]  Noël Bonnet,et al.  Some trends in microscope image processing , 2004 .

[11]  K. Matsushige,et al.  Investigation of Nonswitching Regions in Ferroelectric Thin Films Using Scanning Force Microscopy , 2000 .

[12]  Seungbum Hong Nanoscale phenomena in ferroelectric thin films , 2004 .

[13]  Stephen Jesse,et al.  Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezorespon , 2010 .

[14]  Alexei Gruverman,et al.  Nanoscale ferroelectrics: processing, characterization and future trends , 2006 .

[15]  W. Arnold,et al.  High-frequency response of atomic-force microscope cantilevers , 1997 .

[16]  X. L. Zhang,et al.  Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K , 1983 .

[17]  R. Scholz,et al.  Ferroelectric epitaxial nanocrystals obtained by a self-patterning method , 2003 .

[18]  G M Sacha,et al.  Induced water condensation and bridge formation by electric fields in atomic force microscopy. , 2006, The journal of physical chemistry. B.

[19]  Peter Maksymovych,et al.  Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics , 2008 .

[20]  Resonance frequency analysis for surface-coupled atomic force microscopy cantilever in ambient and liquid environments , 2008 .

[21]  S. Jesse,et al.  A decade of piezoresponse force microscopy: progress, challenges, and opportunities , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  R. Waser,et al.  Nanoscale polarization relaxation in a polycrystalline ferroelectric thin film: Role of local environments , 2005 .

[23]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[24]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[25]  Sergei V. Kalinin,et al.  Probing the role of single defects on the thermodynamics of electric-field induced phase transitions. , 2008, Physical review letters.

[26]  K. Remack,et al.  Manufacturable High-Density 8 Mbit One Transistor–One Capacitor Embedded Ferroelectric Random Access Memory , 2008 .

[27]  A. Gruverman,et al.  Nanoscale Characterisation of Ferroelectric Materials , 2004 .

[28]  B. L. Weeks,et al.  Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[29]  Dragan Damjanovic,et al.  Giant domain wall contribution to the dielectric susceptibility in BaTiO3 single crystals , 2007 .

[30]  Sergei V. Kalinin,et al.  Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. , 2008, Nature Materials.

[31]  T. Kanashima,et al.  Synergistic information encoding by combinatorial pulse operation of ferroelectrics , 2009 .

[32]  D. Bonnell,et al.  Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. , 2008, Nature materials.

[33]  N. Bonnet,et al.  Multivariate statistical methods for the analysis of microscope image series: applications in materials science , 1998 .

[34]  I. Jolliffe Principal Component Analysis , 2002 .

[35]  D. Bonnell,et al.  Effect of ferroelectric polarization on the adsorption and reaction of ethanol on BaTiO3 , 2008 .

[36]  Kai Liu,et al.  Magnetization reversal and nanoscopic magnetic-phase separation in La1-xSrxCoO3 , 2005 .

[37]  M. Salmeron,et al.  Molecular structure of water at interfaces: wetting at the nanometer scale. , 2006, Chemical reviews.

[38]  Ute Rabe,et al.  Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment , 1996 .

[39]  Anna N. Morozovska,et al.  Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy , 2007 .

[40]  R. Cook,et al.  Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy , 2008, Nanotechnology.

[41]  Robert E. Newnham,et al.  Properties of Materials: Anisotropy, Symmetry, Structure , 2005 .

[42]  Abhishek Bhattacharyya,et al.  Unraveling Deterministic Mesoscopic Polarization Switching Mechanisms: Spatially Resolved Studies of a Tilt Grain Boundary in Bismuth Ferrite , 2009 .

[43]  U. Gösele,et al.  Polarization imprint and size effects in mesoscopic ferroelectric structures , 2001 .

[44]  Sergei V. Kalinin,et al.  Piezoresponse force spectroscopy of ferroelectric-semiconductor materials , 2006, cond-mat/0610764.

[45]  L. Eric Cross,et al.  Domains in Ferroic Crystals and Thin Films , 2010 .

[46]  Ivan K. Schuller,et al.  First-order reversal curve measurements of the metal-insulator transition in VO 2 : Signatures of persistent metallic domains , 2009 .

[47]  Sanjeev Aggarwal,et al.  Stoichiometry and phase purity of Pb(Zr,Ti)O3 thin films deposited by metal organic chemical vapor deposition , 2006 .

[48]  D. Alexander,et al.  Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. , 2006, Ultramicroscopy.

[49]  Sergei V. Kalinin,et al.  Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials , 2005 .

[50]  Stephen Jesse,et al.  Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy , 2009, Nanotechnology.

[51]  Anthony B. Kos,et al.  Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods , 2005 .

[52]  Dragan Damjanovic,et al.  STRESS AND FREQUENCY DEPENDENCE OF THE DIRECT PIEZOELECTRIC EFFECT IN FERROELECTRIC CERAMICS , 1997 .