Diagnosis scheme for topological degeneracies crossing high-symmetry lines

Theories of symmetry-based indicators and topological quantum chemistry, while powerful in diagnosing gapped topological materials, cannot be directly applied to diagnosing band degeneracies at high-symmetry momenta due to the violation of the compatibility conditions. Here we design a recursive protocol that utilizes indicators of maximal subgroups to infer the topological nature of band degeneracies at high-symmetry lines. For demonstration, the method is used to predict the existence of iso-energy Weyl points and a node-line cage, respectively, in the phonon bands of In2Te and ZrSiO.

[1]  Fei Gao,et al.  Topological acoustics. , 2014, Physical review letters.

[2]  Yu-Jun Zhao,et al.  Symmetry-Protected Ideal Type-II Weyl Phonons in CdTe. , 2019, Physical review letters.

[3]  Claudia Felser,et al.  A complete catalogue of high-quality topological materials , 2019, Nature.

[4]  Yuqing He,et al.  Catalogue of topological electronic materials , 2018, Nature.

[5]  Feng Tang,et al.  Comprehensive search for topological materials using symmetry indicators , 2019, Nature.

[6]  C. Felser,et al.  A complete catalogue of high-quality topological materials , 2018, Nature.

[7]  Feng Tang,et al.  Comprehensive search for topological materials using symmetry indicators , 2018, Nature.

[8]  Z. Fang,et al.  Observation of Double Weyl Phonons in Parity-Breaking FeSi. , 2018, Physical review letters.

[9]  Tiantian Zhang,et al.  Diagnosis for Nonmagnetic Topological Semimetals in the Absence of Spin-Orbital Coupling , 2017, Physical Review X.

[10]  Z. Fang,et al.  Quantitative mappings between symmetry and topology in solids , 2017, Nature Communications.

[11]  K. Kamazawa,et al.  Topological spin excitations in a three-dimensional antiferromagnet , 2017, Nature Physics.

[12]  Ling Lu,et al.  Double-Weyl Phonons in Transition-Metal Monosilicides. , 2017, Physical review letters.

[13]  Jiangping Hu,et al.  Dirac and Nodal Line Magnons in Three-Dimensional Antiferromagnets. , 2017, Physical review letters.

[14]  M. I. Aroyo,et al.  Topological quantum chemistry , 2017, Nature.

[15]  A. Vishwanath,et al.  Symmetry-based indicators of band topology in the 230 space groups , 2017, Nature Communications.

[16]  Adrien Bouhon,et al.  Data Mining for Three-Dimensional Organic Dirac Materials: Focus on Space Group 19 , 2016, Scientific Reports.

[17]  Yong Xu,et al.  Model for topological phononics and phonon diode , 2016, 1606.08013.

[18]  Junren Shi,et al.  Topological Phonon Modes in a Two-Dimensional Wigner Crystal , 2016, 1612.02871.

[19]  C. T. Chan,et al.  Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states , 2016, Nature Communications.

[20]  X. Dai,et al.  Topological nodal line semimetals , 2016, 1609.05414.

[21]  Marin Soljacic,et al.  Topological states in photonic systems , 2016, Nature Physics.

[22]  Yong Xu,et al.  Topological Phononics and Phonon Diode , 2016 .

[23]  S. Huber,et al.  Classification of topological phonons in linear mechanical metamaterials , 2016, Proceedings of the National Academy of Sciences.

[24]  Barry Bradlyn,et al.  Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals , 2016, Science.

[25]  Xu Ni,et al.  Acoustic topological insulator and robust one-way sound transport , 2015, Nature Physics.

[26]  Andrea Alù,et al.  Floquet topological insulators for sound , 2015, Nature Communications.

[27]  T. Lubensky,et al.  Mechanical Weyl Modes in Topological Maxwell Lattices. , 2015, Physical review letters.

[28]  Shinsei Ryu,et al.  Classification of topological quantum matter with symmetries , 2015, 1505.03535.

[29]  Su-Yang Xu,et al.  New type of Weyl semimetal with quadratic double Weyl fermions , 2015, Proceedings of the National Academy of Sciences.

[30]  C. T. Chan,et al.  Experimental observation of robust surface states on photonic crystals possessing single and double Weyl points , 2015, 1512.04681.

[31]  R. Cava,et al.  Evidence for the chiral anomaly in the Dirac semimetal Na3Bi , 2015, Science.

[32]  X. Dai,et al.  Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure , 2015, 1509.01686.

[33]  Z. Wang,et al.  Topologically protected elastic waves in phononic metamaterials , 2015, Nature Communications.

[34]  D. Kleckner,et al.  Topological mechanics of gyroscopic metamaterials , 2015, Proceedings of the National Academy of Sciences.

[35]  S. Huber,et al.  Observation of phononic helical edge states in a mechanical topological insulator , 2015, Science.

[36]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[37]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[38]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[39]  M. Soljačić,et al.  Experimental observation of Weyl points , 2015, Science.

[40]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[41]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[42]  Vincenzo Vitelli,et al.  Nonlinear conduction via solitons in a topological mechanical insulator , 2014, Proceedings of the National Academy of Sciences.

[43]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[44]  C. Kane,et al.  Topological boundary modes in isostatic lattices , 2013, Nature Physics.

[45]  Quansheng Wu,et al.  Three-dimensional Dirac semimetal and quantum transport in Cd3As2 , 2013, 1305.6780.

[46]  B. Spivak,et al.  Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals , 2012, 1206.1627.

[47]  A. Zyuzin,et al.  Topological response in Weyl semimetals and the chiral anomaly , 2012, 1206.1868.

[48]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[49]  Xi Dai,et al.  Multi-Weyl topological semimetals stabilized by point group symmetry. , 2011, Physical review letters.

[50]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[51]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[52]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[53]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[54]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[55]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[56]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[57]  G. Gamal,et al.  Some Physical Properties of Ga2Se Single Crystals , 1996 .

[58]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[59]  H. Hahn,et al.  Über Silicid‐ und Germanidchalkogenide des Zirkons und Hafniums , 1964 .