15. Structure Information

[1]  C. Lowe,et al.  Nanobiotechnology: the fabrication and applications of chemical and biological nanostructures. , 2000, Current opinion in structural biology.

[2]  Native-like in vivo folding of a circularly permuted jellyroll protein shown by crystal structure analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[4]  D. Eisenberg,et al.  Assessment of protein models with three-dimensional profiles , 1992, Nature.

[5]  D T Jones,et al.  A systematic comparison of protein structure classifications: SCOP, CATH and FSSP. , 1999, Structure.

[6]  G J Kleywegt,et al.  Recognition of spatial motifs in protein structures. , 1999, Journal of molecular biology.

[7]  M C Peitsch,et al.  Protein modelling for all. , 1999, Trends in biochemical sciences.

[8]  M J Sternberg,et al.  Supersites within superfolds. Binding site similarity in the absence of homology. , 1998, Journal of molecular biology.

[9]  A Wlodawer,et al.  Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. , 1998, Annual review of biophysics and biomolecular structure.

[10]  C Venclovas,et al.  Some measures of comparative performance in the three CASPs , 1999, Proteins.

[11]  S. Sligar,et al.  Engineering cytochrome P450s for bioremediation. , 1997, Current opinion in biotechnology.

[12]  F. Blattner,et al.  Functional Genomics: Expression Analysis ofEscherichia coli Growing on Minimal and Rich Media , 1999, Journal of bacteriology.

[13]  P. Schultz,et al.  The scope of antibody catalysis. , 1995, Current opinion in structural biology.

[14]  B. Finlay,et al.  Exploitation of host cells by enteropathogenic Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S K Burley,et al.  Winged helix proteins. , 2000, Current opinion in structural biology.

[16]  Chris Sander,et al.  The FSSP database: fold classification based on structure-structure alignment of proteins , 1996, Nucleic Acids Res..

[17]  D. Bentley The Human Genome Project—An Overview , 2000 .

[18]  David C. Jones,et al.  GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. , 1999, Journal of molecular biology.

[19]  Jonathan A. Eisen,et al.  Microbial genome sequencing , 2000, Nature.

[20]  Steve D. M. Brown,et al.  Genomics meets genetics: towards a mutant map of the mouse , 2000, Mammalian Genome.

[21]  J M Thornton,et al.  Three-dimensional structure analysis of PROSITE patterns. , 1999, Journal of molecular biology.

[22]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[23]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[24]  D. Eisenberg,et al.  A combined algorithm for genome-wide prediction of protein function , 1999, Nature.

[25]  L Serrano,et al.  The order of secondary structure elements does not determine the structure of a protein but does affect its folding kinetics. , 1995, Journal of molecular biology.

[26]  D Eisenberg,et al.  The three‐dimensional profile method using residue preference as a continuous function of residue environment , 1994, Protein science : a publication of the Protein Society.

[27]  G. Labesse,et al.  Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives , 1997, Cellular and Molecular Life Sciences CMLS.

[28]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[29]  J Moult,et al.  Predicting protein three-dimensional structure. , 1999, Current opinion in biotechnology.

[30]  J. Thornton,et al.  Tess: A geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites , 1997, Protein science : a publication of the Protein Society.

[31]  J. Briggs,et al.  Structure-based drug design: computational advances. , 1997, Annual review of pharmacology and toxicology.

[32]  Todd J. A. Ewing,et al.  DREAM++: Flexible docking program for virtual combinatorial libraries , 1999, J. Comput. Aided Mol. Des..

[33]  U Heinemann,et al.  Circular permutations of protein sequence: not so rare? , 1995, Trends in biochemical sciences.

[34]  A. Godzik,et al.  Functional insights from structural predictions: Analysis of the Escherichia coli genome , 2008, Protein science : a publication of the Protein Society.

[35]  C. Macilwain World leaders heap praise on human genome landmark , 2000, Nature.

[36]  J. Wells,et al.  Synthesis of proteins by subtiligase. , 1997, Methods in enzymology.

[37]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[38]  A. Sali,et al.  Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Amos Bairoch,et al.  The PROSITE database, its status in 1999 , 1999, Nucleic Acids Res..

[40]  L Regan,et al.  The design of metal-binding sites in proteins. , 1993, Annual review of biophysics and biomolecular structure.

[41]  D. J. Matthews,et al.  Interfacial metal-binding site design. , 1995, Current opinion in biotechnology.

[42]  L. Regan,et al.  Characterization of a helical protein designed from first principles. , 1988, Science.

[43]  J R Yates,et al.  Mass spectrometry. From genomics to proteomics. , 2000, Trends in genetics : TIG.

[44]  F. Arnold,et al.  Engineering new functions and altering existing functions. , 1996, Current opinion in structural biology.

[45]  A Tramontano,et al.  Homology modeling with low sequence identity. , 1998, Methods.

[46]  David C. Jones,et al.  CATH--a hierarchic classification of protein domain structures. , 1997, Structure.

[47]  A. Panchenko,et al.  Threading with explicit models for evolutionary conservation of structure and sequence , 1999, Proteins.

[48]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[49]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[50]  C. Chothia,et al.  Population statistics of protein structures: lessons from structural classifications. , 1997, Current opinion in structural biology.

[51]  D. T. Jones Protein structure prediction in the postgenomic era. , 2000, Current opinion in structural biology.

[52]  Ronald D. Vale,et al.  Crystal structure of the kinesin motor domain reveals a structural similarity to myosin , 1996, Nature.

[53]  J M Thornton,et al.  Derivation of 3D coordinate templates for searching structural databases: Application to ser‐His‐Asp catalytic triads in the serine proteinases and lipases , 1996, Protein science : a publication of the Protein Society.

[54]  P. S. Kim,et al.  High-resolution protein design with backbone freedom. , 1998, Science.

[55]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[56]  T. Alber,et al.  Circular permutation of T4 lysozyme. , 1993, Biochemistry.

[57]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[58]  A. Sali,et al.  Comparative protein structure modeling of genes and genomes. , 2000, Annual review of biophysics and biomolecular structure.

[59]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[60]  James E. Bray,et al.  The CATH Database provides insights into protein structure/function relationships , 1999, Nucleic Acids Res..

[61]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[62]  D N Woolfson,et al.  A designed heterotrimeric coiled coil. , 1995, Biochemistry.

[63]  S. Kim,et al.  Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[64]  C. Orengo,et al.  From protein structure to function. , 1999, Current opinion in structural biology.

[65]  C Sander,et al.  Evolutionary link between glycogen phosphorylase and a DNA modifying enzyme. , 1995, The EMBO journal.

[66]  K. Luger,et al.  Correct folding of circularly permuted variants of a beta alpha barrel enzyme in vivo. , 1989, Science.

[67]  C. Orengo,et al.  Correlation of observed fold frequency with the occurrence of local structural motifs. , 1999, Journal of molecular biology.

[68]  Ying Xu,et al.  An Efficient Computational Method for Globally Optimal Threading , 1998, J. Comput. Biol..

[69]  Tony Pawson,et al.  Protein modules and signalling networks , 1995, Nature.

[70]  Chris Sander,et al.  Dali/FSSP classification of three-dimensional protein folds , 1997, Nucleic Acids Res..

[71]  C. Orengo,et al.  Protein folds and functions. , 1998, Structure.

[72]  B. Rost,et al.  Protein fold recognition by prediction-based threading. , 1997, Journal of molecular biology.

[73]  Robert M. Stroud,et al.  A designed four helix bundle protein with native-like structure , 1997, Nature Structural Biology.

[74]  Kei-Hoi Cheung,et al.  Large-scale analysis of the yeast genome by transposon tagging and gene disruption , 1999, Nature.

[75]  Tsutomu Nakamura,et al.  Systematic circular permutation of an entire protein reveals essential folding elements , 2000, Nature Structural Biology.

[76]  J. Glasner,et al.  Genome-wide expression profiling in Escherichia coli K-12. , 1999, Nucleic acids research.

[77]  J. Scott Dixon,et al.  Flexible ligand docking using a genetic algorithm , 1995, J. Comput. Aided Mol. Des..

[78]  E. Purisima,et al.  Human cathepsin X: A cysteine protease with unique carboxypeptidase activity. , 1999, Biochemistry.

[79]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[80]  Suganthi Balasubramanian,et al.  Protein alchemy: Changing β-sheet into α-helix , 1997, Nature Structural Biology.

[81]  M J Sternberg,et al.  Progress in protein structure prediction: assessment of CASP3. , 1999, Current opinion in structural biology.

[82]  P Bork,et al.  An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Tainer,et al.  DNA repair mechanisms for the recognition and removal of damaged DNA bases. , 1999, Annual review of biophysics and biomolecular structure.

[84]  M Paoli,et al.  The stereochemical mechanism of the cooperative effects in hemoglobin revisited. , 1998, Annual review of biophysics and biomolecular structure.

[85]  Nikos Kyrpides,et al.  Genomes OnLine Database (GOLD 1.0): a monitor of complete and ongoing genome projects world-wide , 1999, Bioinform..

[86]  C Sander,et al.  Mapping the Protein Universe , 1996, Science.

[87]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.