A W-band CMOS Receiver Chipset for Millimeter-Wave Radiometer Systems

This paper presents a W-band receiver chipset for passive millimeter-wave imaging in a 65 nm standard CMOS technology. The system comprises a direct-conversion receiver front-end with injection-locked tripler and a companion analog back-end for Dicke radiometer. The receiver design addresses the high 1/f noise issue in the advanced CMOS technology. An LO generation scheme using a frequency tripler is proposed to lower the PLL frequency, making it suitable for use in multi-pixel systems. In addition, the noise performance of the receiver is further improved by optimum biasing of transistors of the detector in moderate inversion region to achieve the highest responsivity and lowest NEP. The front-end chipset exhibits a measured peak gain of 35 dB, -3 dB BW of 12 GHz, NF of 8.9 dB, while consuming 94 mW. The baseband chipset has a measured peak responsivity (Rv) of 6 KV/W and a noise equivalent power (NEP) of 8.54 pW/Hz1/2. The two chipsets integrated on-board achieve a total responsivity of 16 MV/W and a calculated Dicke NETD of 1K with a 30 ms integration time.

[1]  Isaiah M. Blankson,et al.  Passive millimetre-wave imaging architectures , 2003 .

[2]  Stephen A. Maas,et al.  Nonlinear Microwave and RF Circuits , 2003 .

[3]  T.S.D. Cheung,et al.  On-chip interconnect for mm-wave applications using an all-copper technology and wavelength reduction , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[4]  A. Tomkins,et al.  A 94GHz SPST Switch in 65nm Bulk CMOS , 2008, 2008 IEEE Compound Semiconductor Integrated Circuits Symposium.

[5]  Tatsuya Hirose,et al.  A 77GHz transceiver in 90nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[6]  M. E. Tiuri,et al.  Radio Astronomy Receivers , 1964, IEEE Transactions on Military Electronics.

[7]  A. Babakhani,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting , 2006, IEEE Journal of Solid-State Circuits.

[8]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[9]  Sean Duffy,et al.  SiGe IC- based mm-wave imager , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[10]  R. N. Anderton,et al.  Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance , 2007, Proceedings of the IEEE.

[11]  Gabriel M. Rebeiz,et al.  Design and Characterization of $W$-Band SiGe RFICs for Passive Millimeter-Wave Imaging , 2010, IEEE Transactions on Microwave Theory and Techniques.

[12]  Alvydas Lisauskas,et al.  A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology , 2009, IEEE Journal of Solid-State Circuits.

[13]  Ka Chun Kwok Bilateral design of mm-wave LNA and receiver front-end in 90nm CMOS , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[14]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[15]  Francesco Svelto,et al.  Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations , 2009, IEEE Journal of Solid-State Circuits.

[16]  H. Olsson,et al.  A novel design approach for GHz CMOS low noise amplifiers , 1999, RAWCON 99. 1999 IEEE Radio and Wireless Conference (Cat. No.99EX292).

[17]  G. Boreman,et al.  Passive millimeter-wave focal plane array , 2004, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[18]  P. Heydari,et al.  A Single-Chip Dual-Band 22–29-GHz/77–81-GHz BiCMOS Transceiver for Automotive Radars , 2009, IEEE Journal of Solid-State Circuits.

[19]  Richard Lai,et al.  Advanced MMIC for Passive Millimeter and Submillimeter Wave Imaging , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[20]  Tadao Nagatsuma,et al.  Latest Trends in Millimeter-wave Imaging Technology , 2008 .

[21]  Sorin P. Voinigescu,et al.  A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.

[22]  P. Chevalier,et al.  Single-Chip W-band SiGe HBT Transceivers and Receivers for Doppler Radar and Millimeter-Wave Imaging , 2008, IEEE Journal of Solid-State Circuits.

[23]  Paul D. Munday,et al.  Development of a low cost 94GHz imaging receiver using multi-layer liquid crystal polymer technology , 2008, SPIE Defense + Commercial Sensing.

[24]  Mikko Kärkkäinen,et al.  Millimeter-Wave Integrated Circuits in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[25]  A. Tomkins,et al.  A Zero-IF 60 GHz 65 nm CMOS Transceiver With Direct BPSK Modulation Demonstrating up to 6 Gb/s Data Rates Over a 2 m Wireless Link , 2009, IEEE Journal of Solid-State Circuits.

[26]  Yijun Zhou,et al.  A Low-Power Ultra-Wideband CMOS True RMS Power Detector , 2008, IEEE Transactions on Microwave Theory and Techniques.

[27]  J. Powell,et al.  SiGe Receiver Front Ends for Millimeter-Wave Passive Imaging , 2008, IEEE Transactions on Microwave Theory and Techniques.

[28]  Sorin P. Voinigescu,et al.  A 95GHz Receiver with Fundamental-Frequency VCO and Static Frequency Divider in 65nm Digital CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[29]  Liang-Hung Lu,et al.  A 10-Gb/s Inductorless CMOS Limiting Amplifier With Third-Order Interleaving Active Feedback , 2007, IEEE Journal of Solid-State Circuits.

[30]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[31]  Tatsuya Hirose,et al.  Compact receiver module for a 94 GHz band passive millimetre-wave imager , 2008 .

[32]  K. Soumyanath,et al.  A 64 GHz LNA With 15.5 dB Gain and 6.5 dB NF in 90 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[33]  T. Suzuki,et al.  A 90Gb/s 2:1 multiplexer IC in InP-based HEMT technology , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[34]  Tatsuya Hirose,et al.  Advanced MMIC Receiver for 94-GHz Band Passive Millimeter-Wave Imager , 2009, IEICE Trans. Electron..

[35]  Lei Zhou,et al.  A Single-Chip Dual-Band 22-29-GHz/77-81-GHz BiCMOS Transceiver for Automotive Radars , 2009, IEEE J. Solid State Circuits.

[36]  Christopher A. Martin,et al.  Advances in millimeter-wave imaging technology for enhanced vision systems , 2002, Proceedings. The 21st Digital Avionics Systems Conference.

[37]  Niels Skou,et al.  Microwave Radiometer Systems: Design and Analysis , 1989 .

[38]  C. Scheytt,et al.  94 GHz Amplifier in SiGe Technology , 2008, 2008 38th European Microwave Conference.

[39]  Gabriel M. Rebeiz,et al.  High-performance W-band SiGe RFICs for passive millimeter-wave imaging , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[40]  Payam Heydari,et al.  A 94-GHz passive imaging receiver using a balanced LNA with embedded Dicke switch , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[41]  W. Kiser,et al.  Simulation, acquisition and analysis of passive millimeter-wave images in remote sensing applications. , 2008, Optics express.

[42]  U. Pfeiffer,et al.  A 94-GHz Monolithic Front-End for Imaging Arrays in SiGe:C Technology , 2008, 2008 European Microwave Integrated Circuit Conference.

[43]  Zhiming Chen,et al.  An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[44]  R. Dicke The measurement of thermal radiation at microwave frequencies. , 1946, The Review of scientific instruments.

[45]  L. Yujiri,et al.  Passive Millimeter Wave Imaging , 2003, 2006 IEEE MTT-S International Microwave Symposium Digest.

[46]  Fan Yong,et al.  The W Band Radiometer for Imaging , 2007, 2007 International Conference on Communications, Circuits and Systems.

[47]  P. Garcia,et al.  A Wideband W-Band Receiver Front-End in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.