Mechanism and microkinetics of the Fischer-Tropsch reaction.

The increasing availability of quantum-chemical data on surface reaction intermediates invites one to revisit unresolved mechanistic issues in heterogeneous catalysis. One such issue of particular current interest is the molecular basis of the Fischer-Tropsch reaction. Here we review current molecular understanding of this reaction that converts synthesis gas into longer hydrocarbons where we especially elucidate recent progress due to the contributions of computational catalysis. This perspective highlights the theoretical approach to heterogeneous catalysis that aims for kinetic prediction from quantum-chemical first principle data. Discussion of the Fischer-Tropsch reaction from this point of view is interesting because of the several mechanistic options available for this reaction. There are many proposals on the nature of the monomeric single C atom containing intermediate that is inserted into the growing hydrocarbon chain as well as on the nature of the growing hydrocarbon chain itself. Two dominant conflicting mechanistic proposals of the Fischer-Tropsch reaction that will be especially compared are the carbide mechanism and the CO insertion mechanism, which involve cleavage of the C-O bond of CO before incorporation of a CHx species into the growing hydrocarbon chain (the carbide mechanism) or after incorporation into the growing hydrocarbon chain (the CO insertion mechanism). The choice of a particular mechanism has important kinetic consequences. Since it is based on molecular information it also affects the structure sensitivity of this particular reaction and hence influences the choice of catalyst composition. We will show how quantum-chemical information on the relative stability of relevant reaction intermediates and estimates of the rate constants of corresponding elementary surface reactions provides a firm foundation to the kinetic analysis of such reactions and allows one to discriminate between the different mechanistic options. The paper will be concluded with a short perspective section dealing with the needs for future research. Many of the current key questions on the physical chemistry as well as computational study of heterogeneous catalysis relate to particular topics for further research on the fundamental aspects of Fischer-Tropsch catalysis.

[1]  J. Nørskov,et al.  Structure Sensitivity of CO Dissociation on Rh Surfaces , 2002 .

[2]  J. Nørskov,et al.  Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis , 2001 .

[3]  R. Brady,et al.  Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction , 1980 .

[4]  Ejm Emiel Hensen,et al.  Structure sensitivity of the Fischer–Tropsch reaction; molecular kinetics simulations , 2011 .

[5]  Anders Holmen,et al.  Deactivation of cobalt based Fischer―Tropsch catalysts: A review , 2010 .

[6]  Anders Holmen,et al.  Understanding the effect of cobalt particle size on Fischer-Tropsch synthesis: surface species and mechanistic studies by SSITKA and kinetic isotope effect. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[7]  Alexis T. Bell,et al.  Evidence for H2D2 isotope effects on fischer-tropsch synthesis over supported ruthenium catalysts , 1981 .

[8]  R. A. Santen,et al.  Adsorbate induced reconstruction of cobalt surfaces , 2008 .

[9]  Zhipan Liu,et al.  General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces. , 2003, Journal of the American Chemical Society.

[10]  Alexis T. Bell,et al.  Catalytic Synthesis of Hydrocarbons over Group VIII Metals. A Discussion of the Reaction Mechanism , 1981 .

[11]  R. A. Santen,et al.  Mechanism of carbon-carbon bond formation by transition-metals , 1992 .

[12]  Xue-qing Gong,et al.  A quantitative determination of reaction mechanisms from density functional theory calculations: Fischer–Tropsch synthesis on flat and stepped cobalt surfaces , 2008 .

[13]  Jun Cheng,et al.  Some Understanding of Fischer–Tropsch Synthesis from Density Functional Theory Calculations , 2010 .

[14]  Paj Peter Hilbers,et al.  Monomer Formation Model versus Chain Growth Model of the Fischer–Tropsch Reaction , 2013 .

[15]  Ping Liu,et al.  Mechanism of ethanol synthesis from syngas on Rh(111). , 2009, Journal of the American Chemical Society.

[16]  B. Enger,et al.  Nickel and Fischer-Tropsch Synthesis , 2012 .

[17]  Burtron H. Davis,et al.  Fischer–Tropsch synthesis: current mechanism and futuristic needs , 2001 .

[18]  J. Nørskov,et al.  Ammonia Synthesis from First-Principles Calculations , 2005, Science.

[19]  J. Nørskov,et al.  Chemical bonding at surfaces and interfaces , 2008 .

[20]  Freek Kapteijn,et al.  Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. , 2006, Journal of the American Chemical Society.

[21]  Im Ionel Ciobica,et al.  Hydrogen-assisted CO dissociation on the Co(211) stepped surface , 2012 .

[22]  H. Storch The Fischer-Tropsch and related syntheses , 1951 .

[23]  E. Iglesia,et al.  The Importance of Olefin Readsorption and H2/CO Reactant Ratio for Hydrocarbon Chain Growth on Ruthenium Catalysts , 1993 .

[24]  Jia Zhang,et al.  Density Functional Theory Studies of Ethanol Decomposition on Rh(211) , 2011 .

[25]  Jun Cheng,et al.  Chain Growth Mechanism in Fischer−Tropsch Synthesis: A DFT Study of C−C Coupling over Ru, Fe, Rh, and Re Surfaces , 2008 .

[26]  J. Berg,et al.  Role of Step Sites and Surface Vacancies in the Adsorption and Activation of CO on χ-Fe5C2 Surfaces , 2010 .

[27]  J. Bitter,et al.  Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins , 2012, Science.

[28]  N. Kruse,et al.  DRIFTS/MS Studies during Chemical Transients and SSITKA of the CO/H2 Reaction over Co-MgO Catalysts , 2010 .

[29]  R. L. Benbow,et al.  Synchrotron radiation study of chemisorptive bonding of CO on transition metals — Polarization effect on Ir(100)☆ , 1976 .

[30]  G. V. D. Laan,et al.  Kinetics and Selectivity of the Fischer–Tropsch Synthesis: A Literature Review , 1999 .

[31]  J. Nørskov,et al.  First principles calculations and experimental insight into methane steam reforming over transition metal catalysts , 2008 .

[32]  R. Behm,et al.  Reaction Intermediates and Side Products in the Methanation of CO and CO2 over Supported Ru Catalysts in H2-Rich Reformate Gases† , 2011 .

[33]  H. Schulz Major and Minor Reactions in Fischer–Tropsch Synthesis on Cobalt Catalysts , 2003 .

[34]  Xiufang Ma,et al.  Carbon chain growth by formyl insertion on rhodium and cobalt catalysts in syngas conversion. , 2011, Angewandte Chemie.

[35]  E. Shustorovich,et al.  The Bond-Order Conservation Approach to Chemisorption and Heterogeneous Catalysis: Applications and Implications , 1991 .

[36]  P. Biloen,et al.  Mechanism of Hydrocarbon Synthesis over Fischer-Tropsch Catalysts , 1982 .

[37]  Im Ionel Ciobica,et al.  A DFT Study of CHx Chemisorption and Transition States for C−H Activation on the Ru(112̄0) Surface , 2002 .

[38]  G. Beitel,et al.  A COMBINED IN-SITU PM-RAIRS AND KINETIC STUDY OF SINGLE-CRYSTAL COBALT CATALYSTS UNDER SYNTHESIS GAS AT PRESSURES UP TO 300 MBAR , 1997 .

[39]  Wen-Ping Ma,et al.  Kinetics modelling of Fischer–Tropsch synthesis over an industrial Fe–Cu–K catalyst☆ , 2003 .

[40]  J. Niemantsverdriet,et al.  Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements , 1980 .

[41]  J. Nørskov,et al.  Structure Sensitivity of the Methanation Reaction: H2 induced CO dissociation on nickel surfaces , 2008 .

[42]  Q. Ge,et al.  Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis. , 2006, The journal of physical chemistry. B.

[43]  Gert Jan Kramer,et al.  Fischer–Tropsch technology — from active site to commercial process , 1999 .

[44]  S. Reyes,et al.  Transport-enhanced α-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis , 1991 .

[45]  P. Sautet,et al.  Surface of Metallic Catalysts under a Pressure of Hydrocarbon Molecules: Metal or Carbide? , 2010 .

[46]  Philippe Sautet,et al.  Interplay between molecular adsorption and metal–support interaction for small supported metal clusters: CO and C2H4 adsorption on Pd4/γ-Al2O3 , 2007 .

[47]  T. Koerts,et al.  Hydrocarbon formation from methane by a low-temperature two-step reaction sequence , 1992 .

[48]  P. Hu,et al.  General trends in CO dissociation on transition metal surfaces , 2001 .

[49]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[50]  A. Jansen,et al.  Direct versus hydrogen-assisted CO dissociation. , 2009, Journal of the American Chemical Society.

[51]  J. Fierro,et al.  Catalytic effects of ruthenium particle size on the Fischer–Tropsch Synthesis , 2011 .

[52]  T. Ziegler,et al.  Theoretical Studies of the Formation and Reactivity of C2 Hydrocarbon Species on the Fe(100) Surface , 2007 .

[53]  P. Somasundaran,et al.  Introduction to surface chemistry and catalysis , 1997 .

[54]  CO Dissociation on the Ru(1121) Surface , 2008 .

[55]  J. Nijenhuis,et al.  Fischer–Tropsch reaction–diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability , 2012 .

[56]  Jinghua Guo,et al.  Size-dependent dissociation of carbon monoxide on cobalt nanoparticles. , 2013, Journal of the American Chemical Society.

[57]  H. Schulz Comparing Fischer-Tropsch Synthesis on Iron- and Cobalt Catalysts: The dynamics of structure and function , 2005 .

[58]  Im Ionel Ciobica,et al.  A DFT Study of Transition States for C−H Activation on the Ru(0001) Surface† , 2000 .

[59]  Bohdan W. Wojciechowski,et al.  The Kinetics of the Fischer-Tropsch Synthesis , 1988 .

[60]  Jianguo Wang,et al.  Adsorption and Dissociation of CO as Well as CHx Coupling and Hydrogenation on the Clean and Oxygen Pre-covered Co(0001) Surfaces , 2008 .

[61]  A. Borgna,et al.  Effect of the CO coverage on the Fischer–Tropsch synthesis mechanism on cobalt catalysts , 2013 .

[62]  M. Neurock,et al.  CO chemisorption and dissociation at high coverages during CO hydrogenation on Ru catalysts. , 2013, Journal of the American Chemical Society.

[63]  J. Goodwin,et al.  Characterization of Catalytic Surfaces by Isotopic-Transient Kinetics during Steady-State Reaction , 1995 .

[64]  Matthew Neurock,et al.  Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. , 2010, Chemical reviews.

[65]  A. J. Markvoort,et al.  Kinetics of the Fischer-Tropsch reaction. , 2012, Angewandte Chemie.

[66]  M. Neurock,et al.  First-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixtures. , 2005, The journal of physical chemistry. B.

[67]  G. Beitel,et al.  Polarization Modulation Infrared Reflection Absorption Spectroscopy of CO Adsorption on Co(0001) under a High-Pressure Regime , 1996 .

[68]  Anders Holmen,et al.  A Highly Active and Selective Manganese Oxide Promoted Cobalt-on-Silica Fischer–Tropsch Catalyst , 2011 .

[69]  E. Hensen,et al.  Site regeneration in the Fischer-Tropsch synthesis reaction: a synchronized CO dissociation and C-C coupling pathway. , 2011, Chemical communications.

[70]  Jon Wilson,et al.  Atomic-Scale Restructuring in High-Pressure Catalysis , 1995 .

[71]  F. Botes,et al.  The Development of a Macro Kinetic Model for a Commercial Co/Pt/Al2O3 Fischer−Tropsch Catalyst , 2009 .

[72]  Santosh K. Gangwal,et al.  A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol , 2008 .

[73]  A. Gross,et al.  Theoretical Surface Science: A Microscopic Perspective , 2002 .

[74]  Marie-Françoise Reyniers,et al.  First-principles kinetic modeling in heterogeneous catalysis: an industrial perspective on best-practice, gaps and needs , 2012 .

[75]  R. V. Hardeveld,et al.  The influence of crystallite size on the adsorption of molecular nitrogen on nickel, palladium and platinum: An infrared and electron-microscopic study , 1966 .

[76]  G. Kramer,et al.  Energetics of methane dissociative adsorption on Rh{111} from DFT calculations , 2006 .

[77]  Thomas Bligaard,et al.  The nature of the active site in heterogeneous metal catalysis. , 2008, Chemical Society reviews.

[78]  Enrique Iglesia,et al.  Selectivity Control and Catalyst Design in the Fischer-Tropsch Synthesis: Sites, Pellets, and Reactors , 1993 .

[79]  R. A. Santen,et al.  The quantum chemical basis of the Fischer-Tropsch reaction , 1990 .

[80]  John Meurig Thomas Principles and practice of heterogeneous catalysis , 1996 .

[81]  J. Gaube,et al.  Studies on the reaction mechanism of the Fischer-Tropsch synthesis on iron and cobalt catalysts , 2008 .

[82]  F. M. Dautzenberg,et al.  Pulse-technique analysis of the kinetics of the Fischer-Tropsch reaction , 1977 .

[83]  John R. Moss,et al.  Organometallic chemistry and surface science: mechanistic models for the Fischer–Tropsch synthesis , 2000 .

[84]  Robert C. Brady,et al.  Mechanism of the Fischer-Tropsch reaction. The chain propagation step , 1981 .

[85]  Zhipan Liu,et al.  A new insight into Fischer-Tropsch synthesis. , 2002, Journal of the American Chemical Society.

[86]  Pascal Raybaud,et al.  Cobalt Catalyzed Fischer–Tropsch Synthesis: Perspectives Opened by First Principles Calculations , 2012, Catalysis Letters.

[87]  G. Ertl Reactions at Solid Surfaces , 2009 .

[88]  A. Outi,et al.  Kinetics and mechanism of the fischer tropsch hydrocarbon synthesis on a cobalt on alumina catalyst , 1981 .

[89]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[90]  Jun Cheng,et al.  Density Functional Theory Study of Iron and Cobalt Carbides for Fischer-Tropsch Synthesis , 2010 .

[91]  Oliver R Inderwildi,et al.  Unraveling the Fischer-Tropsch mechanism: a combined DFT and microkinetic investigation of C-C bond formation on Ru. , 2012, Physical chemistry chemical physics : PCCP.

[92]  Zhipan Liu,et al.  General trends in the barriers of catalytic reactions on transition metal surfaces , 2001 .

[93]  G. V. D. Laan,et al.  Hydrocarbon selectivity model for the gas-solid Fischer-Tropsch synthesis on precipitated iron catalysts , 1999 .

[94]  W. Sachtler,et al.  On the activity of Fischer-Tropsch and methanation catalysts: A study utilizing isotopic transients , 1983 .

[95]  Enrique Iglesia,et al.  Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts , 1997 .

[96]  Jpl John Segers,et al.  Monte Carlo simulations of a surface reaction model showing spatio-temporal pattern formations and oscillations , 1998 .

[97]  A. J. Markvoort,et al.  Chain Growth by CO Insertion in the Fischer–Tropsch Reaction , 2013 .

[98]  Enrique Iglesia,et al.  An Investigation of the Effects of Water on Rate and Selectivity for the Fischer-Tropsch Synthesis on Cobalt-Based Catalysts , 2002 .

[99]  R. Hoffman Solids and Surfaces: A Chemist's View of Bonding in Extended Structures , 1989 .

[100]  Im Ionel Ciobica,et al.  Carbon monoxide dissociation on planar and stepped Ru(0001) surfaces , 2003 .

[101]  Zhipan Liu,et al.  Origin of selectivity switch in Fischer-Tropsch synthesis over Ru and Rh from first-principles statistical mechanics studies. , 2008, Journal of the American Chemical Society.

[102]  M. Neurock,et al.  A First Principles Study of Carbon−Carbon Coupling over the {0001} Surfaces of Co and Ru , 2002 .

[103]  Jens K. Nørskov,et al.  Theoretical surface science and catalysis—calculations and concepts , 2000 .

[104]  Oliver Richard Inderwildi,et al.  In-silico investigations in heterogeneous catalysis--combustion and synthesis of small alkanes. , 2008, Chemical Society reviews.

[105]  Rutger A. van Santen Complementary structure sensitive and insensitive catalytic relationships. , 2009 .

[106]  P. Maitlis,et al.  Organometallic Models for Metal Surface Reactions: Chain Growth Involving Electrophilic Methylidynes in the Fischer–Tropsch Reaction , 2008 .

[107]  A. Borgna,et al.  Density Functional Theory Study of the CO Insertion Mechanism for Fischer−Tropsch Synthesis over Co Catalysts , 2009 .

[108]  R. A. Santen,et al.  Chlorine and caesium promotion of silver ethylene epoxidation catalysts , 2013 .

[109]  Im Ionel Ciobica,et al.  Mechanisms for Chain Growth in Fischer–Tropsch Synthesis over Ru(0001) , 2002 .

[110]  Albert J. Markvoort,et al.  Catalyst nano-particle size dependence of the Fischer–Tropsch reaction , 2013 .

[111]  M. Turner,et al.  Towards a chemical understanding of the Fischer–Tropsch reaction: alkene formation , 1999 .

[112]  Roald Hoffmann,et al.  Bonding and coupling of C1 fragments on metal surfaces , 1988 .

[113]  Matthias Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001 .

[114]  P. Galtier,et al.  Fischer-Tropsch synthesis: Development of a microkinetic model for metal catalysis , 2006 .

[115]  Oliver R. Inderwildi,et al.  Fischer−Tropsch Mechanism Revisited: Alternative Pathways for the Production of Higher Hydrocarbons from Synthesis Gas , 2008 .

[116]  Charles N. Satterfield,et al.  Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst , 1984 .

[117]  C. Chang,et al.  Density functional calculations to study the mechanism of the Fischer-Tropsch reaction on Fe(111) and W(111) surfaces , 2011 .

[118]  Perspectives on the first principles elucidation and the design of active sites , 2003 .

[119]  P. Raybaud,et al.  Kinetic interpretation of catalytic activity patterns based on theoretical chemical descriptors , 2003 .

[120]  R. Zennaro,et al.  Detailed Kinetics of the Fischer–Tropsch Synthesis on Cobalt Catalysts Based on H-Assisted CO Activation , 2011 .

[121]  J. Bitter,et al.  On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis. , 2009, Journal of the American Chemical Society.

[122]  C. Satterfield,et al.  Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst , 1991 .

[123]  Hans Schulz,et al.  Short history and present trends of Fischer–Tropsch synthesis , 1999 .

[124]  Adsorption of d-metal atoms on the regular MgO(001) surface: Density functional study of cluster models embedded in an elastic polarizable environment , 2004 .

[125]  E. Hensen,et al.  Unprecedented Oxygenate Selectivity in Aqueous‐Phase Fischer–Tropsch Synthesis by Ruthenium Nanoparticles , 2011 .

[126]  H. Pichler,et al.  Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H2 , 1970 .

[127]  Jun Cheng,et al.  A First-Principles Study of Oxygenates on Co Surfaces in Fischer−Tropsch Synthesis , 2008 .

[128]  W. Sachtler,et al.  Incorporation of surface carbon into hydrocarbons during Fischer-Tropsch synthesis: Mechanistic implications , 1979 .

[129]  R. Zennaro,et al.  Kinetics of Fischer–Tropsch synthesis on titania-supported cobalt , 2000 .

[130]  Demonstration by 13C NMR Spectroscopy of Regiospecific Carbon−Carbon Coupling during Fischer−Tropsch Probe Reactions , 1999 .

[131]  W. Sachtler,et al.  Catalytic site requirements for elementary steps in syngas conversion to oxygenates over promoted rhodium , 1986 .

[132]  M. Turner,et al.  Heterogeneous catalysis of C–C bond formation: black art or organometallic science? , 1996 .

[133]  M. Dry,et al.  Stability of nanocrystals: thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures. , 2005, The journal of physical chemistry. B.

[134]  M. Beller,et al.  Catalysis : from principles to applications , 2012 .

[135]  Manos Mavrikakis,et al.  CO activation pathways and the mechanism of Fischer–Tropsch synthesis , 2010 .

[136]  Thomas Bligaard,et al.  Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts , 2006 .

[137]  Jianguo Wang,et al.  Insight into CH(4) formation in iron-catalyzed Fischer-Tropsch synthesis. , 2009, Journal of the American Chemical Society.