Assessing the precision in loading estimates by geodetic techniques in Southern Europe

SUMMARY This paper investigates the precision of the estimation of geophysical fluid load deformation computed from GRACE space gravity, GPS vertical displacement and geophysical fluids models [Global Circulation Models (GCMs) for ocean, atmosphere and hydrology], using the three-cornered hat method. This method allows the estimation of the variance of the errors of each technique, when the same quantity is monitored by three instruments with independent errors.Appliedonanetworkofstations,severalpointsofviewcanbeconsidered:thetechnique level(inordertodeterminetheerrorofeachtechnique:GRACE,GPSandGCMs),thesolution level(allowingtocomparetheprecisionofthesametechniquewhendifferentstrategies/models are used), and the station level (in order to emphasize local anomalies and geographical patterns). In particular, our results show a precision of the loading vertical displacement at the level of 1 mm when using GRACE or the fluid models, and of 2 mm using GPS. We do not find significant differences between the precision of different solutions of the same techniques, even when there are strong differences in the data processing.

[1]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[2]  M. Bouin,et al.  Correlated errors in GPS position time series: Implications for velocity estimates , 2011 .

[3]  S. Swenson,et al.  A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois , 2006 .

[4]  Assessment of ECMWF-derived tropospheric delay models within the EUREF Permanent Network , 2011 .

[5]  J. Famiglietti,et al.  Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE , 2007 .

[6]  Peter Steigenberger,et al.  Vertical deformations from homogeneously processed GRACE and global GPS long-term series , 2011 .

[7]  Matthew Rodell,et al.  Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time‐variable gravity observations , 2005 .

[8]  Grzegorz Michalak,et al.  GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005 , 2012 .

[9]  Hubert H. G. Savenije,et al.  A Comparison of Global and Regional GRACE Models for Land Hydrology , 2008 .

[10]  Matthew Rodell,et al.  Analysis of terrestrial water storage changes from GRACE and GLDAS , 2008 .

[11]  S. Swenson,et al.  Satellites measure recent rates of groundwater depletion in California's Central Valley , 2011 .

[12]  D. Chambers Evaluation of new GRACE time‐variable gravity data over the ocean , 2006 .

[13]  Zuheir Altamimi,et al.  Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters , 2011, Journal of Geodesy.

[14]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[15]  Bruno Merz,et al.  A global analysis of temporal and spatial variations in continental water storage , 2007 .

[16]  T. M. Chin,et al.  Multi-reference evaluation of uncertainty in earth orientation parameter measurements , 2003 .

[17]  N. G. Val’es,et al.  CNES/GRGS 10-day gravity field models (release 2) and their evaluation , 2010 .

[18]  Guillaume Ramillien,et al.  Detecting hydrologic deformation using GRACE and GPS , 2009 .

[19]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .

[20]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[21]  M. Feissel-Vernier,et al.  Stability of VLBI, SLR, DORIS, and GPS positioning , 2007 .

[22]  G. Blewitt,et al.  A New Global Mode of Earth Deformation: Seasonal Cycle Detected , 2001, Science.

[23]  M. Bouin,et al.  Comparison of Regional and Global GNSS Positions, Velocities and Residual Time Series , 2012 .

[24]  C. Jekeli Alternative methods to smooth the Earth's gravity field , 1981 .

[25]  M. Camp,et al.  Retrieving earthquake signature in grace gravity solutions , 2008 .

[26]  The Release 04 CHAMP and GRACE EIGEN Gravity Field Models , 2010 .

[27]  C. Shum,et al.  On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions , 2009 .

[28]  M. Rothacher,et al.  System Earth via Geodetic-Geophysical Space Techniques , 2010 .

[29]  Frédéric Frappart,et al.  Time variations of land water storage from an inversion of 2 years of GRACE geoids , 2005 .

[30]  S. Pagiatakis The response of a realistic earth to ocean tide loading , 1990 .

[31]  P. Tavella,et al.  A revisited three-cornered hat method for estimating frequency standard instability , 1993 .

[32]  Xavier Collilieux,et al.  Hydrological deformation induced by the West African Monsoon: Comparison of GPS, GRACE and loading models , 2012 .

[33]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[34]  Y. Bock,et al.  Anatomy of apparent seasonal variations from GPS‐derived site position time series , 2001 .

[35]  Peter J. Clarke,et al.  Choice of optimal averaging radii for temporal GRACE gravity solutions, a comparison with GPS and satellite altimetry , 2006 .

[36]  P. Tregoning,et al.  Dynamic planet : monitoring and understanding a dynamic planet with geodetic and oceanographic tools : IAG symposium, Cairns, Australia, 22-26 August 2005 , 2006 .

[37]  Xavier Collilieux,et al.  Quality assessment of GPS reprocessed terrestrial reference frame , 2011 .

[38]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[39]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[40]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[41]  David S. Moore,et al.  The Practice of Business Statistics: Using Data for Decisions , 2002 .

[42]  B. Scanlon,et al.  GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA , 2010 .

[43]  J. Kusche,et al.  Hydrological Signals Observed by the GRACE Satellites , 2008 .

[44]  F. Lyard,et al.  High‐frequency non‐tidal ocean loading effects on surface gravity measurements , 2008 .

[45]  Fabio Rocca,et al.  A Combination of Space and Terrestrial Geodetic Techniques to Monitor Land Subsidence: Case Study, the Southeastern Po Plain, Italy , 2007 .

[46]  Peter J. Clarke,et al.  Inversion of Earth's changing shape to weigh sea level in static equilibrium with surface mass redistribution , 2003 .

[47]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[48]  V. Dehant,et al.  Atmospheric Angular Momentum Time-Series: Characterization of their Internal Noise and Creation of a Combined Series , 2004 .

[49]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[50]  George P. McCabe,et al.  The Practice of Business Statistics , 2004 .

[51]  Leonid Petrov,et al.  Study of the atmospheric pressure loading signal in very long baseline interferometry observations , 2003, physics/0311096.

[52]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[53]  Pedro Elosegui,et al.  Climate‐driven deformation of the solid Earth from GRACE and GPS , 2004 .

[54]  Harald Schuh,et al.  The impact of tropospheric mapping functions based on numerical weather models on the determination of geodetic parameters , 2007 .

[55]  J. Ray,et al.  Anomalous harmonics in the spectra of GPS position estimates , 2008 .

[56]  Paul Tregoning,et al.  Atmospheric effects and spurious signals in GPS analyses , 2009 .

[57]  Dimitris Menemenlis,et al.  Effects of the Indonesian Throughflow on the Pacific and Indian Oceans , 2002 .

[58]  D. Hartmann,et al.  Intraseasonal Periodicities in Indian Rainfall , 1989 .

[59]  J. Wahr,et al.  A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe , 2007 .