The orness measures for two compound quasi-arithmetic mean aggregation operators

[1]  Radko Mesiar,et al.  Parametric characterization of aggregation functions , 2009, Fuzzy Sets Syst..

[2]  Qingli Da,et al.  On the properties of regular increasing monotone (RIM) quantifiers with maximum entropy† , 2008, Int. J. Gen. Syst..

[3]  Henrik Legind Larsen,et al.  Generalized conjunction/disjunction , 2007, Int. J. Approx. Reason..

[4]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[5]  Vicenç Torra,et al.  Modeling decisions - information fusion and aggregation operators , 2007 .

[6]  Vicenç Torra,et al.  Modeling Decisions: Information Fusion and Aggregation Operators (Cognitive Technologies) , 2006 .

[7]  Xinwang Liu,et al.  An Orness Measure for Quasi-Arithmetic Means , 2006, IEEE Transactions on Fuzzy Systems.

[8]  Xinwang Liu,et al.  Parameterized additive neat OWA operators with different orness levels , 2006, Int. J. Intell. Syst..

[9]  Xinwang Liu,et al.  Some properties of the weighted OWA operator , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[10]  Radko Mesiar,et al.  Weighted means and weighting functions , 2006, Kybernetika.

[11]  Xinwang Liu,et al.  On the properties of equidifferent RIM quantifier with generating function , 2005, Int. J. Gen. Syst..

[12]  Vicenç Torra,et al.  OWA operators in data modeling and reidentification , 2004, IEEE Transactions on Fuzzy Systems.

[13]  Ronald R. Yager,et al.  OWA aggregation over a continuous interval argument with applications to decision making , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Jean-Luc Marichal,et al.  Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral , 2004, Eur. J. Oper. Res..

[15]  Ronald R. Yager,et al.  On the retranslation process in Zadeh's paradigm of computing with words , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  Ronald R. Yager,et al.  Generalized OWA Aggregation Operators , 2004, Fuzzy Optim. Decis. Mak..

[17]  Xinwang Liu,et al.  On the properties of parametric geometric OWA operator , 2004, Int. J. Approx. Reason..

[18]  Bernard De Baets,et al.  Current issues in data and knowledge engineering , 2004 .

[19]  Jesús Manuel Fernández Salido,et al.  Extending Yager's orness concept for the OWA aggregators to other mean operators , 2003, Fuzzy Sets Syst..

[20]  Ivan Popchev,et al.  Properties of the aggregation operators related with fuzzy relations , 2003, Fuzzy Sets Syst..

[21]  Radko Mesiar,et al.  Aggregation operators: ordering and bounds , 2003, Fuzzy Sets Syst..

[22]  Oscar Cordón,et al.  A model of fuzzy linguistic IRS based on multi-granular linguistic information , 2003, Int. J. Approx. Reason..

[23]  Henrik Legind Larsen,et al.  Efficient Andness-Directed Importance Weighted Averaging Operators , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[24]  Gleb Beliakov,et al.  How to build aggregation operators from data , 2003, Int. J. Intell. Syst..

[25]  Rita Almeida Ribeiro,et al.  Aggregation with generalized mixture operators using weighting functions , 2003, Fuzzy Sets Syst..

[26]  Francisco Herrera,et al.  A study of the origin and uses of the ordered weighted geometric operator in multicriteria decision making , 2003, Int. J. Intell. Syst..

[27]  Vicenç Torra,et al.  Learning weights for the quasi-weighted means , 2002, IEEE Trans. Fuzzy Syst..

[28]  Itsuo Hatono,et al.  Hierarchical semi-numeric method for pairwise fuzzy group decision making , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[29]  Z. S. Xu,et al.  The ordered weighted geometric averaging operators , 2002, Int. J. Intell. Syst..

[30]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[31]  R. Mesiar,et al.  Aggregation operators: new trends and applications , 2002 .

[32]  Anna Kolesáarová Limit properties of quasi-arithmetic means , 2001 .

[33]  Janusz Kacprzyk,et al.  Computing with words in intelligent database querying: standalone and Internet-based applications , 2001, Inf. Sci..

[34]  J. Ume,et al.  Some Mean Values Related to the Quasi-Arithmetic Mean☆ , 2000 .

[35]  Jung-Hsien Chiang,et al.  Aggregating membership values by a Choquet-fuzzy-integral based operator , 2000, Fuzzy Sets Syst..

[36]  Joan Torrens,et al.  Generation of Weighting Triangles Associated with Aggregation Functions , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[37]  Jean-Luc Marichal,et al.  Behavioral analysis of aggregation in multicriteria decision aid , 2000 .

[38]  Vicenç Torra,et al.  On aggregation operators for ordinal qualitative information , 2000, IEEE Trans. Fuzzy Syst..

[39]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[40]  Itsuo Hatono,et al.  Linguistic labels for expressing fuzzy preference relations in fuzzy group decision making , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[41]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .

[42]  R. Yager Quantifier guided aggregation using OWA operators , 1996, Int. J. Intell. Syst..

[43]  János C. Fodor,et al.  Characterization of the ordered weighted averaging operators , 1995, IEEE Trans. Fuzzy Syst..

[44]  M. Grabisch Fuzzy integral in multicriteria decision making , 1995 .

[45]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[46]  R. Yager,et al.  PARAMETERIZED AND-UKE AND OR-LIKE OWA OPERATORS , 1994 .

[47]  R. Yager Families of OWA operators , 1993 .

[48]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[49]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[50]  P. Bullen Handbook of means and their inequalities , 1987 .

[51]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..