Consumer preferences and bid-price control for cloud services

Nowadays, instead of investing into large and expensive IT infrastructures, it is possible to buy computing environments or (complex) electronic services on-demand in order to perform certain business activities. This approach is typically known as Cloud Computing. For consumers, Cloud Computing embraces a service-oriented architecture (SOA) and implies potential for reduced total cost of ownership, great flexibility as well as reduced information technology overhead (Vouk, 2008). Consequently, one of the most relevant advantages is the increased technical and financial flexibility for Cloud Computing consumers. Consumers have various requirements regarding Cloud services depending on their industry and business, and hence are different with regard to their preferences and valuations. Providers of Cloud services can be limited in their resource capacities or flexibility, and they are exposed to the challenge of how to sell their services efficiently. To address distinctive consumer preferences, service providers can offer numerous classes of services according to service level agreements (SLA). These classes of services are priced differently. Furthermore, providers allocating their capacity to various types of consumers have incentives to maximize output, which is the revenue yielded by the sale of capacity units. Revenue Management deals with complex decision problems concerning sales, demand, and pricing of services from a provider’s perspective (Talluri and van Ryzin, 2004b). Recently, the consumer’s perspective also becomes increasingly important to enable an integrated view of the complex interaction between the provider and the consumer. In this thesis both views are examined. At first, the applicability of Revenue Management methods in Cloud Computing is discussed. The properties of Cloud services are analyzed and compared to the requirements of Revenue Management. Current literature does not consider Revenue Management in Clouds and how this may impact the design of services. Secondly, Revenue Management concepts like accept/reject policies, dynamic pricing or advance reservation are not always accepted by the consumers. Consumers in some domains are not used to dynamic prices and occasionally deny it. In 2000, Amazon for example failed to introduce dynamic pricing for the online store due to customer complaints about the frequent price changes (Weiss and Mehrotra, 2001). A survey as a part of this thesis was conducted to un-

[1]  Samuel E. Bodily,et al.  A Taxonomy and Research Overview of Perishable-Asset Revenue Management: Yield Management, Overbooking, and Pricing , 1992, Oper. Res..

[2]  S. Kimes Yield management: A tool for capacity-considered service firms , 1989 .

[3]  Naufel J. Vilcassim,et al.  easyJet® pricing strategy: Should low-fare airlines offer last-minute deals? , 2008 .

[4]  Susana V. Mondschein,et al.  Periodic Pricing of Seasonal Products in Retailing , 1997 .

[5]  Paul E. Green,et al.  Robustness of Conjoint Analysis: Some Monté Carlo Results , 1978 .

[6]  Z. Shen,et al.  Customer Behavior Modeling in Revenue Management and Auctions: A Review and New Research Opportunities , 2007 .

[7]  San Francisco 2009 CLOUD COMPUTING TRENDS REPORT , 2009 .

[8]  A. Gosavi,et al.  A reinforcement learning approach to a single leg airline revenue management problem with multiple fare classes and overbooking , 2002 .

[9]  Charles B. Weinberg,et al.  Design of Subscription Programs for a Performing Arts Series , 1981 .

[10]  P. Hill Tangibles, intangibles and services: a new taxonomy for the classification of output , 1999 .

[11]  Robert B. Wilson Nonlinear pricing and mechanism design , 1996 .

[12]  Prashant Pandey,et al.  Cloud computing , 2010, ICWET.

[13]  J. M. Kittross The measurement of meaning , 1959 .

[14]  Faïz Gallouj,et al.  Innovation in services , 1997 .

[15]  Byung-Kwan Lee,et al.  The effect of information overload on consumer choice quality in an on-line environment , 2004 .

[16]  Jordan J. Louviere,et al.  Quick and easy choice sets: Constructing optimal and nearly optimal stated choice experiments , 2005 .

[17]  Peter P. Belobaba,et al.  Survey Paper - Airline Yield Management An Overview of Seat Inventory Control , 1987, Transp. Sci..

[18]  Ian Foster,et al.  The Grid 2 - Blueprint for a New Computing Infrastructure, Second Edition , 1998, The Grid 2, 2nd Edition.

[19]  E. Kuntsche,et al.  Multivariate Analysemethoden: Eine anwendungsorientierte Einführung. , 2001 .

[20]  Fuqiang Zhang,et al.  Strategic Customer Behavior, Commitment, and Supply Chain Performance , 2007 .

[21]  J. R. DeShazo,et al.  Designing Choice Sets for Stated Preference Methods: The Effects of Complexity on Choice Consistency , 2002 .

[22]  Dan Zhang,et al.  Pricing substitutable flights in airline revenue management , 2009, Eur. J. Oper. Res..

[23]  Martin Bichler,et al.  Applications of flexible pricing in business-to-business electronic commerce , 2002, IBM Syst. J..

[24]  S. Thamarai Selvi,et al.  Service Level Agreement Based Grid Scheduling , 2008, 2008 IEEE International Conference on Web Services.

[25]  Mladen A. Vouk,et al.  Cloud Computing – Issues, Research and Implementations , 2008, CIT 2008.

[26]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[27]  Guillermo Gallego,et al.  Strategic Management of Distressed Inventory , 2008 .

[28]  Naresh K. Malhotra,et al.  Basic Marketing Research: A Decision-making Approach , 2008 .

[29]  Peter Belobaba,et al.  OR Practice - Application of a Probabilistic Decision Model to Airline Seat Inventory Control , 1989, Oper. Res..

[30]  Rajkumar Buyya,et al.  Managing Cancellations and No-Shows of Reservations with Overbooking to Increase Resource Revenue , 2008, 2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CCGRID).

[31]  James L. Heskett,et al.  Service Breakthroughs: Changing the Rules of the Game (Прорыв в сфере услуг: изменение правил игры) , 1990 .

[32]  Nancy L. Stokey Intertemporal Price Discrimination , 1979 .

[33]  William J. Carroll,et al.  Evolutionary Change in Product Management: Experiences in the Car Rental Industry , 1995 .

[34]  Jeffrey I. McGill,et al.  Revenue Management: Research Overview and Prospects , 1999, Transp. Sci..

[35]  Mark D. Uncles,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1987 .

[36]  V. Rao,et al.  Research for product positioning and design decisions: An integrative review , 1995 .

[37]  Gordon Bell,et al.  What's next in high-performance computing? , 2002, CACM.

[38]  Thorsten Teichert,et al.  Nutzenschätzung in Conjoint-Analysen , 2001 .

[39]  Ivan I. Ivanov,et al.  Utility Computing: Reality and Beyond , 2007, SECRYPT.

[40]  Xiaomin Zhu,et al.  From virtualized resources to virtual computing grids: the In-VIGO system , 2005, Future Gener. Comput. Syst..

[41]  S. Singhal,et al.  Outsourcing Business to Cloud Computing Services: Opportunities and Challenges , 2009 .

[42]  I. Ajzen Attitudes, Personality and Behavior , 1988 .

[43]  Wendy L. Currie,et al.  Value creation from the application service provider e-business model: the experience of four firms , 2004, J. Enterp. Inf. Manag..

[44]  S. Addelman Orthogonal Main-Effect Plans for Asymmetrical Factorial Experiments , 1962 .

[45]  Mary Jo Bitner,et al.  Customer contributions and roles in service delivery , 1997 .

[46]  David P. Anderson,et al.  SETI@home-massively distributed computing for SETI , 2001, Comput. Sci. Eng..

[47]  Randy H. Katz,et al.  Above the Clouds: A Berkeley View of Cloud Computing , 2009 .

[48]  V. Srinivasan,et al.  A CONJUNCTIVE-COMPENSATORY APPROACH TO THE SELF-EXPLICATION OF MULTIATTRIBUTED PREFERENCES* , 1988 .

[49]  Mike P. Papazoglou,et al.  Web Services - Principles and Technology , 2007 .

[50]  Andreas Werner,et al.  Online-Research - Markt- und Sozialforschung mit dem Internet , 2005 .

[51]  J. M. Rathmell What is Meant by Services? , 1966 .

[52]  Suresh K. Nair,et al.  An application of yield management for Internet Service Providers , 2001 .

[53]  K. Douglas Hoffman Marketing + MIS = e-service , 2003, CACM.

[54]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[55]  Samuel E. Bodily,et al.  Modeling the Customer Arrival Process and Comparing Decision Rules in Perishable Asset Revenue Management Situations , 1993, Transp. Sci..

[56]  L. Youseff,et al.  Toward a Unified Ontology of Cloud Computing , 2008, 2008 Grid Computing Environments Workshop.

[57]  Renato J. O. Figueiredo,et al.  A case for grid computing on virtual machines , 2003, 23rd International Conference on Distributed Computing Systems, 2003. Proceedings..

[58]  Jordan J. Louviere,et al.  A Cross-Validity Comparison of Conjoint Analysis and Choice Models at Different Levels of Aggregation , 1998 .

[59]  Joseph Coughlan,et al.  Airline overbooking in the multi-class case , 1999, J. Oper. Res. Soc..

[60]  M. Rothstein An Airline Overbooking Model , 1971 .

[61]  M. Hossein Safizadeh,et al.  The Internal Validity of the Trade-Off Method of Conjoint Analysis , 1989 .

[62]  Serguei Netessine,et al.  Revenue Management Games: Horizontal and Vertical Competition , 2005, Manag. Sci..

[63]  E. Anderson,et al.  The Antecedents and Consequences of Customer Satisfaction for Firms , 1993 .

[64]  Thomas Jackson,et al.  Predictive Maintenance , 2004, The Grid 2, 2nd Edition.

[65]  Janakiram Subramanian,et al.  Airline Yield Management with Overbooking, Cancellations, and No-Shows , 1999, Transp. Sci..

[66]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..

[67]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[68]  Ghassan Alkadi,et al.  Grid Computing: The past, now, and future , 2006 .

[69]  Serguei Netessine,et al.  Revenue Management Through Dynamic Cross Selling in E-Commerce Retailing , 2006, Oper. Res..

[70]  Peter M. Chisnall,et al.  Questionnaire Design, Interviewing and Attitude Measurement , 1993 .

[71]  Christopher K. Hsee,et al.  The Evaluability Hypothesis: An Explanation for Preference Reversals between Joint and Separate Evaluations of Alternatives , 1996 .

[72]  S. Neslin Linking Product Features to Perceptions: Self-Stated versus Statistically Revealed Importance Weights , 1981 .

[73]  Mladen A. Vouk,et al.  NCSU's Virtual Computing Lab: A Cloud Computing Solution , 2009, Computer.

[74]  Garrett J. van Ryzin,et al.  A Randomized Linear Programming Method for Computing Network Bid Prices , 1999, Transp. Sci..

[75]  W. Knight Unlocking the grid [grid computing technology] , 2006 .

[76]  Daniel M. Dias,et al.  Service-Level Agreements and Commercial Grids , 2003, IEEE Internet Comput..

[77]  Luis F. G. Sarmenta,et al.  Volunteer Computing , 1996 .

[78]  Ami Marowka,et al.  The GRID: Blueprint for a New Computing Infrastructure , 2000, Parallel Distributed Comput. Pract..

[79]  N. Carr The end of corporate computing , 2005 .

[80]  Alf Kimms,et al.  Simulation of stochastic demand data streams for network revenue management problems , 2006, OR Spectr..

[81]  R. Phillips,et al.  Pricing and Revenue Optimization , 2005 .

[82]  P. K. Kannan,et al.  E-service: a new paradigm for business in the electronic environment , 2003, CACM.

[83]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[84]  Martin Bichler,et al.  Admission control for media on demand services , 2007, Service Oriented Computing and Applications.

[85]  Martin Bichler,et al.  Design science in information systems research , 2006, Wirtschaftsinf..

[86]  K. Littlewood. Special Issue Papers: Forecasting and control of passenger bookings , 2005 .

[87]  P. Mell,et al.  The NIST Definition of Cloud Computing , 2011 .

[88]  Ralph L. Keeney,et al.  Multidimensional utility functions: theory, assessment, and application , 1969 .

[89]  K. Talluri,et al.  The Theory and Practice of Revenue Management , 2004 .

[90]  A. Tversky Elimination by aspects: A theory of choice. , 1972 .

[91]  T C Botimer,et al.  Airline pricing and fare product differentiation: A new theoretical framework , 1999, J. Oper. Res. Soc..

[92]  Joseph A. Schumpeter,et al.  The Analysis of Economic Change , 2010 .

[93]  André de Palma,et al.  Discrete Choice Theory of Product Differentiation , 1995 .

[94]  John G. Wilson,et al.  Wait or buy? The strategic consumer: Pricing and profit implications , 2003, J. Oper. Res. Soc..

[95]  Robert J. Kauffman,et al.  50th Anniversary Article: The Evolution of Research on Information Systems: A Fiftieth-Year Survey of the Literature in Management Science , 2004, Manag. Sci..

[96]  Kevin Pak,et al.  Revenue Management: New Features and Models , 2000 .

[97]  James W. Moore,et al.  Institute of Electrical and Electronics Engineers (IEEE) , 2002 .

[98]  Soulaymane Kachani,et al.  Forecasting and optimisation for hotel revenue management , 2007 .

[99]  Pinar Keskinocak,et al.  Dynamic pricing in the presence of inventory considerations: research overview, current practices, and future directions , 2003, IEEE Engineering Management Review.

[100]  Abraham Seidmann,et al.  The Pricing Strategy Analysis for the "Software-as-a-Service" Business Model , 2008, GECON.

[101]  Marisa J. Mazzotta,et al.  Decision Making When Choices Are Complex: A Test of Heiner's Hypothesis , 1995 .

[102]  Dan Zhang,et al.  Revenue Management for Parallel Flights with Customer-Choice Behavior , 2005, Oper. Res..

[103]  Geoffrey C. Fox Editorial for Economic Models and Algorithms for Grid Systems , 2010, Concurr. Comput. Pract. Exp..

[104]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[105]  W. Stahel The service economy: ‘wealth without resource consumption’? , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[106]  C. Merle Crawford,et al.  Evaluating new products: A system, not an act , 1986 .

[107]  Paul P. Maglio,et al.  Service systems, service scientists, SSME, and innovation , 2006, CACM.

[108]  J. Dawes Do Data Characteristics Change According to the Number of Scale Points Used? An Experiment Using 5-Point, 7-Point and 10-Point Scales , 2008 .

[109]  Pradeep K. Korgaonkar,et al.  An Empirical Comparison of the Predictive Validity of Self-Explicated, Huber-Hybrid, Traditional Conjoint, and Hybrid Conjoint Models , 1983 .

[110]  Garrett J. van Ryzin,et al.  Revenue Management Under a General Discrete Choice Model of Consumer Behavior , 2004, Manag. Sci..

[111]  Jeff McGill,et al.  Optimal Dynamic Pricing of Perishable Items by a Monopolist Facing Strategic Consumers , 2010 .

[112]  Brian Hayes,et al.  What Is Cloud Computing? , 2019, Cloud Technologies.

[113]  Doug Johnson,et al.  Computing in the Clouds. , 2010 .

[114]  A. Odlyzko,et al.  Competitive pricing of information goods: Subscription pricing versus pay-per-use , 1999 .

[115]  Hari Madduri,et al.  The utility metering service of the Universal Management Infrastructure , 2004, IBM Syst. J..

[116]  Dick R. Wittink,et al.  Commercial use of conjoint analysis in Europe: Results and critical reflections , 1994 .

[117]  Andreas Werner Marketing-Instrument Internet - Strategie, Werkzeuge, Umsetzung (3. Aufl.) , 2002 .

[118]  Sheryl E. Kimes,et al.  Revenue management: A retrospective , 2003 .

[119]  G. Cowan Statistical data analysis , 1998 .

[120]  Giuseppe A. Paleologo Price-at-Risk: A methodology for pricing utility computing services , 2004, IBM Syst. J..

[121]  Christof Weinhardt,et al.  International Conference on Information Systems ( ICIS ) 1-1-2010 CUSTOMER HETEROGENEITY AND TARIFF BIASES IN CLOUD COMPUTING , 2013 .

[122]  Quirino Paris,et al.  MULTIPLE OPTIMAL SOLUTIONS IN LINEAR PROGRAMMING MODELS , 1981 .

[123]  Borja Sotomayor,et al.  Virtual Clusters for Grid Communities , 2006, Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06).

[124]  Wen Zhao,et al.  A Dynamic Model for Airline Seat Allocation with Passenger Diversion and No-Shows , 2001, Transp. Sci..

[125]  Christopher S. Tang,et al.  Optimal Markdown Pricing: Implications of Inventory Display Formats in the Presence of Strategic Customers , 2009, Manag. Sci..

[126]  K. Emich,et al.  Airline Network Revenue Management by Multistage Stochastic Programming , 2009 .

[127]  Christof Weinhardt,et al.  Business Models in the Service World , 2009, IT Professional.

[128]  Vithala R. Rao,et al.  Conjoint Measurement- for Quantifying Judgmental Data , 1971 .

[129]  Abhijit Gosavi,et al.  Simulation optimization for revenue management of airlines with cancellations and overbooking , 2006, OR Spectr..

[130]  R. C. Judd The Case for Redefining Services , 1964 .

[131]  Kevin Lai,et al.  Markets are dead, long live markets , 2005, SECO.

[132]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[133]  Madhav N. Segal,et al.  Reliability of Conjoint Analysis: Contrasting Data Collection Procedures , 1982 .

[134]  K. Talluri,et al.  An Analysis of Bid-Price Controls for Network Revenue Management , 1998 .

[135]  Tatsiana Levina,et al.  Dynamic Pricing with Online Learning and Strategic Consumers: An Application of the Aggregating Algorithm , 2009, Oper. Res..

[136]  Michael Lang,et al.  Using Performance Modeling to Design Large-Scale Systems , 2009, Computer.

[137]  Robert A. Shumsky,et al.  Introduction to the Theory and Practice of Yield Management , 2002 .

[138]  Simon See,et al.  Customers' Preferences for Infrastructure Cloud Services , 2010, 2010 IEEE 12th Conference on Commerce and Enterprise Computing.

[139]  H. Varian,et al.  The Economics Of Information Technology , 2004 .

[140]  Chris Rose,et al.  A Break in the Clouds: Towards a Cloud Definition , 2011 .

[141]  S. Hunt,et al.  Unlocking the grid [electricity industry restructuring] , 1996 .

[142]  Won Kim,et al.  Cloud Computing: Today and Tomorrow , 2009, J. Object Technol..

[143]  Stowe Shoemaker The Pricing and Revenue Management of Services , 2008 .

[144]  Ian T. Foster,et al.  Describing the Elephant: The Different Faces of IT as Service , 2005, ACM Queue.

[145]  Eberhard Schöneburg,et al.  Genetische Algorithmen und Evolutionsstrategien - eine Einführung in Theorie und Praxis der simulierten Evolution , 1994 .

[146]  Robert Klein Network capacity control using self-adjusting bid-prices , 2007, OR Spectr..

[147]  G. Ryzin,et al.  Optimal dynamic pricing of inventories with stochastic demand over finite horizons , 1994 .

[148]  Gerard Briscoe,et al.  Digital ecosystems in the clouds: Towards community cloud computing , 2009, 2009 3rd IEEE International Conference on Digital Ecosystems and Technologies.

[149]  Ashutosh Dixit,et al.  A taxonomy of information technology-enhanced pricing strategies☆ , 2008 .

[150]  Jochen Wirtz,et al.  Services Marketing: People, Technology, Strategy , 2000 .

[151]  Ioana Popescu,et al.  Revenue Management in a Dynamic Network Environment , 2003, Transp. Sci..

[152]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[153]  Nicola Secomandi,et al.  From Revenue Management Concepts to Software Systems , 2002, Interfaces.

[154]  Peter Belobaba,et al.  Revenue impacts of fare input and demand forecast accuracy in airline yield management , 2002, J. Oper. Res. Soc..

[155]  鄭宇庭 行銷硏究 : Marketing research , 2009 .

[156]  Stephen L. Vargo,et al.  Evolving to a New Dominant Logic for Marketing , 2004 .

[157]  Timothy Roscoe,et al.  Resource overbooking and application profiling in shared hosting platforms , 2002, OSDI '02.

[158]  Ben Vinod,et al.  Unlocking the value of revenue management in the hotel industry , 2004 .

[159]  P. Fishburn Methods of Estimating Additive Utilities , 1967 .

[160]  Neal Leavitt,et al.  Is Cloud Computing Really Ready for Prime Time? , 2009, Computer.

[161]  Lee W. McKnight,et al.  Internet Economics: When Constituencies Collide in Cyberspace , 1997, IEEE Internet Comput..

[162]  Wendy L. Currie,et al.  Application service providers: a model in evolution , 2003, ICEC '03.

[163]  Alok Gupta,et al.  Managing computing resources in active intranets , 2002, Int. J. Netw. Manag..

[164]  Dominique Rouzies,et al.  Reliability and internal validity of conjoint estimated utility functions under error-free versus error-full conditions , 1994 .

[165]  Garrett J. van Ryzin,et al.  Computing Virtual Nesting Controls for Network Revenue Management Under Customer Choice Behavior , 2008, Manuf. Serv. Oper. Manag..

[166]  Friedhelm Meyer auf der Heide,et al.  A Web Computing Environment for Parallel Algorithms in Java , 2001 .

[167]  Minho Cho,et al.  On the Threshold Purchasing Behavior of Customers Facing Dynamically Priced Perishable Products , 2005 .

[168]  Marc Premm,et al.  Bid price control and dynamic pricing in clouds , 2009, ECIS.

[169]  Serhan Ziya,et al.  Pricing Promotional Products Under Upselling , 2008, Manuf. Serv. Oper. Manag..

[170]  Rajkumar Buyya,et al.  Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities , 2008, 2008 10th IEEE International Conference on High Performance Computing and Communications.

[171]  Dominique Rouzies,et al.  Internal Validity of Conjoint Analysis Under Alternative Measurement Procedures , 1999 .

[172]  D. Neumann,et al.  Managing Revenue in Grids , 2009, 2009 42nd Hawaii International Conference on System Sciences.

[173]  Lizhe Wang,et al.  Scientific Cloud Computing: Early Definition and Experience , 2008, 2008 10th IEEE International Conference on High Performance Computing and Communications.

[174]  Xuanming Su,et al.  Intertemporal Pricing with Strategic Customer Behavior , 2007, Manag. Sci..

[175]  J. Stößer,et al.  Market-Based Scheduling in Distributed Computing Systems , 2009 .

[176]  Elizabeth Louise Williamson,et al.  Airline network seat inventory control : methodologies and revenue impacts , 1992 .

[177]  Jinzy Zhu,et al.  Cloud Computing: IT as a Service , 2009, IT Professional.

[178]  Eric A. Brewer,et al.  Cluster-based scalable network services , 1997, SOSP.

[179]  Dimitris Bertsimas,et al.  Simulation-Based Booking Limits for Airline Revenue Management , 2005, Oper. Res..

[180]  Yannis Bakos,et al.  Bundling Information Goods: Pricing, Profits and Efficiency , 1998 .

[181]  Richard M. Johnson Trade-Off Analysis of Consumer Values , 1974 .

[182]  Gustavo Alonso,et al.  Web Services: Concepts, Architectures and Applications , 2009 .

[183]  Paul E. Green,et al.  Chapter 10 Conjoint analysis with product-positioning applications , 1993, Marketing.

[184]  Christof Weinhardt,et al.  Towards an Efficient Decision Policy for Cloud Service Providers , 2010, ICIS.

[185]  Thomas Hess,et al.  Software as a Service , 2008, Wirtschaftsinf..

[186]  M. Frank,et al.  Principles for simulations in revenue management , 2008 .

[187]  Yezekael Hayel,et al.  Yield management for IT resources on demand: Analysis and validation of a new paradigm for managing computing centres , 2005 .

[188]  B C Smith,et al.  ANALYSIS OF ALTERNATE ORIGIN-DESTINATION CONTROL STRATEGIES , 1988 .

[189]  William L. Cooper Asymptotic Behavior of an Allocation Policy for Revenue Management , 2002, Oper. Res..

[190]  Yong Zhao,et al.  Cloud Computing and Grid Computing 360-Degree Compared , 2008, GCE 2008.

[191]  H. Varian Market Structure in the Network Age , 1999 .

[192]  Robert M. Weiss,et al.  Online Dynamic Pricing : Efficiency , Equity and the Future of E-commerce , 2012 .

[193]  Douglas F. Parkhill,et al.  The Challenge of the Computer Utility , 1966 .

[194]  F. Glover,et al.  The Passenger-Mix Problem in the Scheduled Airlines , 1982 .

[195]  Constantinos Maglaras,et al.  Pricing and Design of Differentiated Services: Approximate Analysis and Structural Insights , 2005, Oper. Res..

[196]  Rajkumar Buyya,et al.  Cluster Computing: A High-Performance Contender , 1999, Computer.

[197]  Mark M. Davis,et al.  New issues and opportunities in service design research , 2002 .

[198]  Benjamin Blau,et al.  Coordination in Service Value Networks: A Mechanism Design Approach , 2012 .

[199]  Luiz A. DaSilva,et al.  Pricing for QoS-enabled networks: A survey , 2000, IEEE Communications Surveys & Tutorials.

[200]  E. Andrew Boyd,et al.  Revenue Management and E-Commerce , 2003, Manag. Sci..

[201]  Garrett J. van Ryzin,et al.  A Multiproduct Dynamic Pricing Problem and Its Applications to Network Yield Management , 1997, Oper. Res..

[202]  Irene C. L. Ng Differentiation, self-selection and revenue management , 2006 .

[203]  Daniel Adelman,et al.  Dynamic Bid Prices in Revenue Management , 2007, Oper. Res..

[204]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[205]  Richard Freling,et al.  Models and techniques for hotel revenue management using a rolling horizon , 2001 .

[206]  David M. Booth,et al.  Web Services Architecture , 2004 .