Development of An Impedimetric Aptasensor for the Detection of Staphylococcus aureus

In combination with electrochemical impedance spectroscopy, aptamer-based biosensors are a powerful tool for fast analytical devices. Herein, we present an impedimetric aptasensor for the detection of the human pathogen Staphylococcus aureus. The used aptamer targets protein A, a surface bound virulence factor of S. aureus. The thiol-modified protein A-binding aptamer was co-immobilized with 6-mercapto-1-hexanol onto gold electrodes by self-assembly. Optimization of the ratio of aptamer to 6-mercapto-1-hexanol resulted in an average density of 1.01 ± 0.44 × 1013 aptamer molecules per cm2. As shown with quartz crystal microbalance experiments, the immobilized aptamer retained its functionality to bind recombinant protein A. Our impedimetric biosensor is based on the principle that binding of target molecules to the immobilized aptamer decreases the electron transfer between electrode and ferri-/ferrocyanide in solution, which is measured as an increase of impedance. Microscale thermophoresis measurements showed that addition of the redox probe ferri-/ferrocyanide has no influence on the binding of aptamer and its target. We demonstrated that upon incubation with various concentrations of S. aureus, the charge-transfer resistance increased proportionally. The developed biosensor showed a limit of detection of 10 CFU·mL−1 and results were available within 10 minutes. The biosensor is highly selective, distinguishing non-target bacteria such as Escherichia coli and Staphylococcus epidermidis. This work highlights the immense potential of impedimetric aptasensors for future biosensing applications.

[1]  T. Scheper,et al.  Aptamer-modified nanomaterials: principles and applications , 2017 .

[2]  O. Schneewind,et al.  Distribution of Protein A on the Surface of Staphylococcus aureus , 2007, Journal of bacteriology.

[3]  Zhouping Wang,et al.  Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles , 2014, Microchimica Acta.

[4]  Kok-Gan Chan,et al.  Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations , 2015, Front. Microbiol..

[5]  D. Alland,et al.  Highly Sensitive Detection of Staphylococcus aureus Directly from Patient Blood , 2012, PloS one.

[6]  Keiko Yamada,et al.  Staphylococcal enterotoxins in processed dairy products , 2016 .

[7]  Jerzy Hoja,et al.  A family of new generation miniaturized impedance analyzers for technical object diagnostics , 2013 .

[8]  S.P. Mohanty,et al.  Biosensors: a tutorial review , 2006, IEEE Potentials.

[9]  Yan Lian,et al.  A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus. , 2015, Biosensors & bioelectronics.

[10]  Ciara K O'Sullivan,et al.  Reusable impedimetric aptasensor. , 2005, Analytical chemistry.

[11]  Pan‐Chyr Yang,et al.  Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles , 2013, Scientific Reports.

[12]  Xinhui Liu,et al.  Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. , 2016, Analytica chimica acta.

[13]  Mustafa Kemal Sezgintürk,et al.  A review on impedimetric biosensors , 2016, Artificial cells, nanomedicine, and biotechnology.

[14]  M. Bergdoll,et al.  Staphylococcal enterotoxin. II. Chemistry. , 1959, Archives of biochemistry and biophysics.

[15]  J. Riu,et al.  Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. , 2012, Biosensors & bioelectronics.

[16]  Itamar Willner,et al.  Electronic aptamer-based sensors. , 2007, Angewandte Chemie.

[17]  Vincent Vivier,et al.  Determination of effective capacitance and film thickness from constant-phase-element parameters , 2010 .

[18]  R. Stoltenburg,et al.  FluMag-SELEX as an advantageous method for DNA aptamer selection , 2005, Analytical and bioanalytical chemistry.

[19]  J. Riu,et al.  Graphene-based potentiometric biosensor for the immediate detection of living bacteria. , 2014, Biosensors & bioelectronics.

[20]  Nuo Duan,et al.  Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. , 2012, Analytica chimica acta.

[21]  Dong Ho Kim,et al.  Clinical utility of the Xpert MRSA assay for early detection of methicillin-resistant Staphylococcus aureus , 2012, Molecular medicine reports.

[22]  G. S. Zamay,et al.  Aptamer-based viability impedimetric sensor for bacteria. , 2012, Analytical chemistry.

[23]  K. Carroll Rapid Diagnostics for Methicillin-Resistant Staphylococcus aureus , 2012, Molecular Diagnosis & Therapy.

[24]  C. O’Sullivan Aptasensors – the future of biosensing? , 2002, Analytical and bioanalytical chemistry.

[25]  Vance G. Fowler,et al.  Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management , 2015, Clinical Microbiology Reviews.

[26]  Shiwei Jin,et al.  Research advance in rapid detection of foodborne Staphylococcus aureus , 2016 .

[27]  H. Y. Woo,et al.  Label-Free, Electrochemical Quantitation of Potassium Ions from Femtomolar Levels. , 2015, Chemistry, an Asian journal.

[28]  A. Steel,et al.  Electrochemical quantitation of DNA immobilized on gold. , 1998, Analytical chemistry.

[29]  R. Stoltenburg,et al.  G-quadruplex aptamer targeting Protein A and its capability to detect Staphylococcus aureus demonstrated by ELONA , 2016, Scientific Reports.

[30]  J. Sjödahl,et al.  Structural studies on the four repetitive Fc-binding regions in protein A from Staphylococcus aureus. , 1977, European journal of biochemistry.

[31]  N. Jaffrezic‐Renault,et al.  Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria , 2015, Environmental Science and Pollution Research.

[32]  Ulrich J. Krull,et al.  Self-assembly of short and long-chain n-alkyl thiols onto gold surfaces: A real-time study using surface plasmon resonance techniques , 1996 .

[33]  Mohammad Ramezani,et al.  Aptamer based biosensors for detection of Staphylococcus aureus , 2017 .

[34]  Zhouping Wang,et al.  A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. , 2014, Talanta.

[35]  A. Abbaspour,et al.  Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. , 2015, Biosensors & bioelectronics.

[36]  Stephen J. Martin,et al.  Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading , 1991 .

[37]  Kemin Wang,et al.  A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. , 2015, The Analyst.

[38]  F. Lisdat,et al.  The use of electrochemical impedance spectroscopy for biosensing , 2008, Analytical and bioanalytical chemistry.

[39]  Gary C. Barker,et al.  The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment , 2011, Virulence.

[40]  S. Gopinath Methods developed for SELEX , 2006, Analytical and bioanalytical chemistry.

[41]  H. Erickson Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy , 2009, Biological Procedures Online.

[42]  Georg Peters,et al.  Variation of the Polymorphic Region X of the Protein A Gene during Persistent Airway Infection of Cystic Fibrosis Patients Reflects Two Independent Mechanisms of Genetic Change in Staphylococcus aureus , 2005, Journal of Clinical Microbiology.

[43]  J. Emsley,et al.  Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions , 2006, The FEBS journal.

[44]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[45]  Thomas Schubert,et al.  In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A , 2015, PloS one.

[46]  J. Samet,et al.  Food and Drug Administration , 2007, BMJ : British Medical Journal.

[47]  T. Scheper,et al.  Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures. , 2017, Journal of biotechnology.

[48]  Pedro Estrela,et al.  Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. , 2008, Biosensors & bioelectronics.

[49]  T. Dickinson,et al.  The kinetics of the ferrous/ferric and ferro/ferricyanide reactions at platinum and gold electrodes , 1972 .

[50]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[51]  B. Shen,et al.  Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus , 2009, Nucleic acids research.