Foundations of Online Structure Theory II: The Operator Approach

We introduce a framework for online structure theory. Our approach generalises notions arising independently in several areas of computability theory and complexity theory. We suggest a unifying approach using operators where we allow the input to be a countable object of an arbitrary complexity. We give a new framework which (i) ties online algorithms with computable analysis, (ii) shows how to use modifications of notions from computable analysis, such as Weihrauch reducibility, to analyse finite but uniform combinatorics, (iii) show how to finitize reverse mathematics to suggest a fine structure of finite analogs of infinite combinatorial problems, and (iv) see how similar ideas can be amalgamated from areas such as EX-learning, computable analysis, distributed computing and the like. One of the key ideas is that online algorithms can be viewed as a sub-area of computable analysis. Conversely, we also get an enrichment of computable analysis from classical online algorithms.

[1]  Kurt Mehlhorn,et al.  Polynomial and abstract subrecursive classes , 1974, STOC '74.

[2]  Sanjay Jain,et al.  Inductive inference and reverse mathematics , 2016, Ann. Pure Appl. Log..

[3]  Klaus Weihrauch On the complexity of online computations of real functions , 1991, J. Complex..

[4]  Matthew de Brecht Topological and Algebraic Aspects of Algorithmic Learning Theory , 2010 .

[5]  Mark Braverman,et al.  On the complexity of real functions , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[6]  Sandy Irani Coloring inductive graphs on-line , 2005, Algorithmica.

[7]  Victor L. Selivanov,et al.  Polynomial-Time Presentations of Algebraic Number Fields , 2018, CiE.

[8]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[9]  Robert I. Soare,et al.  Computability Theory and Differential Geometry , 2004, Bulletin of Symbolic Logic.

[10]  Vasco Brattka,et al.  On the Uniform Computational Content of the Baire Category Theorem , 2015, Notre Dame J. Formal Log..

[11]  Shmuel Weinberger,et al.  The Fractal Nature of Riem/Diff I , 2003 .

[12]  Bernard R. Hodgson On Direct Products of Automaton Decidable Theories , 1982, Theor. Comput. Sci..

[13]  Akihiro Yamamoto,et al.  Mind change complexity of inferring unbounded unions of restricted pattern languages from positive data , 2010, Theor. Comput. Sci..

[14]  B. A. Reed,et al.  Algorithmic Aspects of Tree Width , 2003 .

[15]  R. O. Gandy,et al.  COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .

[16]  M. Dehn Über unendliche diskontinuierliche Gruppen , 1911 .

[17]  Jeffry L. Hirst,et al.  Reverse Mathematics of Matroids , 2017, Computability and Complexity.

[18]  Matthew Harrison-Trainor,et al.  AUTOMATIC AND POLYNOMIAL-TIME ALGEBRAIC STRUCTURES , 2019, The Journal of Symbolic Logic.

[19]  Catherine McCartin,et al.  Online Problems, Pathwidth, and Persistence , 2004, IWPEC.

[20]  Klaus Weihrauch,et al.  Computable Analysis , 2005, CiE.

[21]  Vasco Brattka,et al.  Weihrauch degrees, omniscience principles and weak computability , 2009, J. Symb. Log..

[22]  Matthias Schröder,et al.  Fast Online Multiplication of Real Numbers , 1997, STACS.

[23]  Rodney G. Downey,et al.  Turing and randomness , 2017, The Turing Guide.

[24]  M. Borel Les probabilités dénombrables et leurs applications arithmétiques , 1909 .

[25]  Shai Shalev-Shwartz,et al.  Online learning: theory, algorithms and applications (למידה מקוונת.) , 2007 .

[26]  Kurt Mehlhorn Polynomial and Abstract Subrecursive Classes , 1976, J. Comput. Syst. Sci..

[27]  Todor Tsankov,et al.  The additive group of the rationals does not have an automatic presentation , 2009, The Journal of Symbolic Logic.

[28]  Stephen A. Cook,et al.  Complexity Theory for Operators in Analysis , 2012, TOCT.

[29]  Douglas Cenzer,et al.  Complexity Theoretic Model Theory and Algebra , 2013 .

[30]  Iskander Sh. Kalimullin,et al.  FOUNDATIONS OF ONLINE STRUCTURE THEORY , 2019, The Bulletin of Symbolic Logic.

[31]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[32]  Peter C. Fishburn,et al.  Interval graphs and interval orders , 1985, Discret. Math..

[33]  A. Church On the concept of a random sequence , 1940 .

[34]  L. Pronzato,et al.  Algorithms: A Survey , 2013 .

[35]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[36]  W. Gasarch A Survey of Recursive Combinatorics , 2007 .

[37]  Henry Kierstead,et al.  Chapter 18 Recursive and on-line graph coloring , 1998 .

[38]  William W. Wadge,et al.  Reducibility and Determinateness on the Baire Space , 1982 .

[39]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[40]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[41]  Anil Nerode,et al.  Automatic Presentations of Structures , 1994, LCC.

[42]  Bakhadyr Khoussainov,et al.  A quest for algorithmically random infinite structures , 2014, CSL-LICS.

[43]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[44]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[45]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[46]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[47]  Douglas A. Cenzer,et al.  Space complexity of Abelian groups , 2009, Arch. Math. Log..

[48]  Ker-I Ko,et al.  Computational Complexity of Real Functions , 1982, Theor. Comput. Sci..

[49]  Matthias Schröder,et al.  Extended admissibility , 2002, Theor. Comput. Sci..

[50]  Henry A. Kierstead,et al.  An effective version of Dilworth’s theorem , 1981 .

[51]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[52]  J. Shepherdson Computational Complexity of Real Functions , 1985 .

[53]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[54]  Jean-Michel Muller Some Characterizations of Functions Computable in On-Line Arithmetic , 1994, IEEE Trans. Computers.

[55]  Ludovic Patey,et al.  Diagonally non-computable functions and fireworks , 2014, Inf. Comput..

[56]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[57]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[58]  John P. Cleave,et al.  The Primitive Recursive Analysis of Ordinary Differential Equations and the Complexity of Their Solutions , 1969, J. Comput. Syst. Sci..

[59]  Rupert Hölzl,et al.  Probabilistic computability and choice , 2013, Inf. Comput..

[60]  Keng Meng Ng,et al.  Algebraic structures computable without delay , 2017, Theor. Comput. Sci..

[61]  Richard M. Karp,et al.  On-Line Algorithms Versus Off-Line Algorithms: How Much is it Worth to Know the Future? , 1992, IFIP Congress.

[62]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[63]  John E. Hopcroft,et al.  Complexity of Computer Computations , 1974, IFIP Congress.

[64]  J. Avigad Inverting the Furstenberg correspondence , 2011, 1101.0575.

[65]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[66]  Jun Qin,et al.  Coloring interval graphs with first-fit , 1995, Discret. Math..

[67]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[68]  Rodney G. Downey,et al.  Graphs are not universal for online computability , 2020, J. Comput. Syst. Sci..

[69]  Christoph Kreitz,et al.  Theory of Representations , 1985, Theor. Comput. Sci..

[70]  Dwight R. Bean Effective Coloration , 1976, J. Symb. Log..

[71]  Michael E. Saks,et al.  An on-line graph coloring algorithm with sublinear performance ratio , 1989, Discret. Math..

[72]  Alexandre Ivanov,et al.  FINITELY AXIOMATIZABLE THEORIES (Siberian School of Algebra and Logic) , 1999 .

[73]  A. G. Melnikov,et al.  The Diversity of Categoricity Without Delay , 2017 .

[74]  Anil Nerode,et al.  The Introduction of Non-Recursive Methods into Mathematics* , 1982 .

[75]  Serge Grigorieff,et al.  Every recursive linear ordering has a copy in DTIME-SPACE(n,log(n)) , 1990, Journal of Symbolic Logic.

[76]  Jeffrey B. Remmel,et al.  Graph colorings and recursively bounded Π10-classes , 1986, Ann. Pure Appl. Log..

[77]  Sam Toueg,et al.  Unreliable failure detectors for reliable distributed systems , 1996, JACM.

[78]  Catherine McCartin,et al.  Online promise problems with online width metrics , 2007, J. Comput. Syst. Sci..

[79]  Ernst Specker,et al.  Der Satz vom Maximum in der Rekursiven Analysis , 1990 .

[80]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[81]  George Barmpalias,et al.  A C.E. Real That Cannot Be SW-Computed by Any Ω Number , 2006, Notre Dame J. Formal Log..

[82]  Peter Bro Miltersen,et al.  Complexity Models for Incremental Computation , 1994, Theor. Comput. Sci..

[83]  P. E. Alaev,et al.  Structures Computable in Polynomial Time. I , 2017 .

[84]  Akihiro Yamamoto,et al.  Topological properties of concept spaces (full version) , 2010, Inf. Comput..

[85]  Ernst Specker,et al.  Nicht konstruktiv beweisbare Sätze der Analysis , 1949, Journal of Symbolic Logic.

[86]  Douglas A. Cenzer,et al.  Polynomial-Time Abelian Groups , 1992, Ann. Pure Appl. Log..

[87]  Martin Grohe,et al.  Descriptive Complexity, Canonisation, and Definable Graph Structure Theory , 2017, Lecture Notes in Logic.

[88]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[89]  Kishor S. Trivedi,et al.  On-line algorithms for division and multiplication , 1975, 1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH).

[90]  Susanne Albers,et al.  Online algorithms: a survey , 2003, Math. Program..

[91]  Douglas A. Cenzer,et al.  Polynomial-Time versus Recursive Models , 1991, Ann. Pure Appl. Log..

[92]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1993, Graduate Texts in Computer Science.

[93]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[94]  A. Nies Computability and randomness , 2009 .