Comparison of electrolized water and multiple chemical sanitizer action against heat-resistant molds (HRM).

[1]  W. White,et al.  Sustained Reduction of Aerobiological Densities in Buildings by Modification of Interior Surfaces with Silane Modified Quaternary Amines , 2021 .

[2]  R. Wagner,et al.  Antifungal efficacy of sanitizers and electrolyzed waters against toxigenic Aspergillus. , 2020, Food research international.

[3]  Evelyn,et al.  Resistant moulds as pasteurization target for cold distributed high pressure and heat assisted high pressure processed fruit products , 2020, Journal of Food Engineering.

[4]  Byssochlamys , 2020, Definitions.

[5]  J. Lemos,et al.  Spoilage fungi in a bread factory in Brazil: Diversity and incidence through the bread-making process. , 2019, Food research international.

[6]  E. Rico-Munoz,et al.  The fungal problem in thermal processed beverages , 2019, Current Opinion in Food Science.

[7]  M. V. Garcia,et al.  Food industry spoilage fungi control through facility sanitization , 2019, Current Opinion in Food Science.

[8]  J. Lemos,et al.  Antifungal activity of commercial sanitizers against strains of Penicillium roqueforti, Penicillium paneum, Hyphopichia burtonii, and Aspergillus pseudoglaucus: Bakery spoilage fungi. , 2019, Food microbiology.

[9]  E. Jacob‐Lopes,et al.  Ultrasound and slightly acid electrolyzed water application: An efficient combination to reduce the bacterial counts of chicken breast during pre-chilling. , 2019, International journal of food microbiology.

[10]  Gilson Parussolo,et al.  Fungi in air, raw materials and surface of dry fermented sausage produced in Brazil , 2019, LWT.

[11]  F. Coulon,et al.  Bioaerosol biomonitoring: Sampling optimization for molecular microbial ecology , 2019, Molecular ecology resources.

[12]  K. Hodge,et al.  Fruit infected with Paecilomyces niveus: A source of spoilage inoculum and patulin in apple juice concentrate? , 2019, Food Control.

[13]  A. Olivier Bernardi,et al.  Sensitivity of food spoilage fungi to a smoke generator sanitizer. , 2019, International journal of food microbiology.

[14]  Guang-hong Zhou,et al.  Primary concerns regarding the application of electrolyzed water in the meat industry , 2019, Food Control.

[15]  R. Stefanello,et al.  Efficacy of commercial sanitizers against fungi of concern in the food industry , 2018, LWT.

[16]  J. Dijksterhuis,et al.  Inactivation of stress-resistant ascospores of Eurotiales by industrial sanitizers. , 2018, International journal of food microbiology.

[17]  J. V. Van Impe,et al.  Occurrence, distribution and contamination levels of heat-resistant moulds throughout the processing of pasteurized high-acid fruit products. , 2018, International journal of food microbiology.

[18]  Xuxia Zhou,et al.  Using acid and alkaline electrolyzed water to reduce deoxynivalenol and mycological contaminations in wheat grains , 2018, Food Control.

[19]  R. Holley,et al.  Evaluation of chlorine dioxide, acidified sodium chlorite and peroxyacetic acid for control of Escherichia coli O157:H7 in beef patties from treated beef trim. , 2018, Food research international.

[20]  Yu Zhou,et al.  Evaluation of Sanitizing Methods for Reducing Microbial Contamination on Fresh Strawberry, Cherry Tomato, and Red Bayberry , 2017, Front. Microbiol..

[21]  E. Rico-Munoz Heat resistant molds in foods and beverages: recent advances on assessment and prevention , 2017 .

[22]  J. Barin,et al.  Application of electrolyzed water for improving pork meat quality. , 2017, Food research international.

[23]  E. Berni,et al.  Occurrence and ecological distribution of Heat Resistant Moulds Spores (HRMS) in raw materials used by food industry and thermal characterization of two Talaromyces isolates. , 2017, International journal of food microbiology.

[24]  Said Kinani,et al.  Formation and determination of organohalogen by-products in water – Part I. Discussing the parameters influencing the formation of organohalogen by-products and the relevance of estimating their concentration using the AOX (adsorbable organic halide) method , 2016 .

[25]  E. P. Pinto,et al.  Sanitizantes: concentrações e aplicabilidade na indústria de alimentos , 2016 .

[26]  D. Oh,et al.  Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives. , 2016, Comprehensive reviews in food science and food safety.

[27]  Evelyn,et al.  Modeling the inactivation of Neosartorya fischeri ascospores in apple juice by high pressure, power ultrasound and thermal processing , 2016 .

[28]  Evelyn,et al.  Inactivation of Byssochlamys nivea ascospores in strawberry puree by high pressure, power ultrasound and thermal processing. , 2015, International journal of food microbiology.

[29]  E. Berni,et al.  Heat-resistance of Hamigera avellanea and Thermoascus crustaceus isolated from pasteurized acid products. , 2014, International journal of food microbiology.

[30]  J. Houbraken,et al.  Detection and enumeration of heat-resistant molds , 2014 .

[31]  S. Almonacid,et al.  THERMAL PROCESSES | Pasteurization , 2014 .

[32]  Maribel Abadias,et al.  Growth potential of Escherichia coli O157:H7 on fresh-cut fruits (melon and pineapple) and vegetables (carrot and escarole) stored under different conditions , 2012 .

[33]  Y. Imanishi,et al.  Risk analysis and development of a rapid method for identifying four species of Byssochlamys , 2012 .

[34]  S. Saeger,et al.  Neutralized electrolyzed water efficiently reduces Fusarium spp. in vitro and on wheat kernels but can trigger deoxynivalenol (DON) biosynthesis , 2012 .

[35]  Daniel Furtado Ferreira,et al.  Sisvar: a computer statistical analysis system , 2011 .

[36]  Cynthia Joll,et al.  Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines. , 2011, Toxicology.

[37]  俊一 宇田川,et al.  かんきつ加工品の変敗原因となったカビ Byssochlamys lagunculariae の同定と耐熱性 , 2010 .

[38]  M. Eberlin,et al.  Influence of package, type of apple juice and temperature on the production of patulin by Byssochlamys nivea and Byssochlamys fulva. , 2010, International journal of food microbiology.

[39]  G. Nychas,et al.  Modelling the effect of temperature and water activity on the growth rate and growth/no growth interface of Byssochlamys fulva and Byssochlamys nivea. , 2010, Food microbiology.

[40]  T. Yaguchi,et al.  A rapid method for identifying Byssochlamys and Hamigera. , 2010, Journal of Food Protection.

[41]  A. Rosenthal,et al.  Heat resistance and the effects of continuous pasteurization on the inactivation of Byssochlamys fulva ascospores in clarified apple juice , 2009, Journal of applied microbiology.

[42]  J. Pitt,et al.  Growth and mycotoxin production by food spoilage fungi under high carbon dioxide and low oxygen atmospheres. , 2009, International journal of food microbiology.

[43]  H. Xin,et al.  Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions , 2009 .

[44]  M. Pereira,et al.  Atividade antimicrobiana e hemolitica do extrato bruto produzido por Bacillus amyloliquefaciens , 2008 .

[45]  Yen-Con Hung,et al.  Application of electrolyzed water in the food industry , 2008 .

[46]  J. Guentzel,et al.  Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. , 2008, Food microbiology.

[47]  F. R. F. Jaenisch,et al.  Atividade antibacteriana de desinfetantes para uso na produção orgânica de aves , 2007 .

[48]  Yi-Cheng Su,et al.  Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces. , 2006, International journal of food microbiology.

[49]  J. Frisvad,et al.  Byssochlamys: significance of heat resistance and mycotoxin production. , 2006, Advances in experimental medicine and biology.

[50]  S. M. Samuel,et al.  In vivo and in vitro evaluation of the efficacy of a peracetic acid-based disinfectant for decontamination of acrylic resins. , 2006, Brazilian dental journal.

[51]  S. Hsu Effects of flow rate, temperature and salt concentration on chemical and physical properties of electrolyzed oxidizing water , 2005 .

[52]  S. Paik,et al.  Efficacy of electrolyzed acid water in reprocessing patient‐used flexible upper endoscopes: Comparison with 2% alkaline glutaraldehyde , 2004, Journal of gastroenterology and hepatology.

[53]  P. Randall,et al.  Use of measured concentrations of acetic acid vapour to control postharvest decay in d'Anjou pears , 2004 .

[54]  Y. Hung,et al.  Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. , 2004, International journal of food microbiology.

[55]  G. M. F. Aragão,et al.  Influencia de diferentes pH do meio de aquecimento na resistencia termica de Neosartorya fischeri isolado do processo produtivo de maca , 2004 .

[56]  M. J. Garrido,et al.  Inactivation of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes on the surface of tomatoes by neutral electrolyzed water , 2003, Letters in Applied Microbiology.

[57]  John S. Novak,et al.  Washing and sanitizing raw materials for minimally processed fruit and vegetable products. , 2003 .

[58]  K. Itoh,et al.  Decontaminative effect of frozen acidic electrolyzed water on lettuce. , 2002, Journal of food protection.

[59]  V Tournas,et al.  Heat-resistant fungi of importance to the food and beverage industry. , 1994, Critical reviews in microbiology.

[60]  J. Pitt,et al.  Fungi and Food Spoilage , 1987 .

[61]  T. Waldron Antisepsis disinfection, and sterilization , 1986 .