Local clustering in scale-free networks with hidden variables.

We investigate the presence of triangles in a class of correlated random graphs in which hidden variables determine the pairwise connections between vertices. The class rules out self-loops and multiple edges. We focus on the regime where the hidden variables follow a power law with exponent τ∈(2,3), so that the degrees have infinite variance. The natural cutoff h_{c} characterizes the largest degrees in the hidden variable models, and a structural cutoff h_{s} introduces negative degree correlations (disassortative mixing) due to the infinite-variance degrees. We show that local clustering decreases with the hidden variable (or degree). We also determine how the average clustering coefficient C scales with the network size N, as a function of h_{s} and h_{c}. For scale-free networks with exponent 2<τ<3 and the default choices h_{s}∼N^{1/2} and h_{c}∼N^{1/(τ-1)} this gives C∼N^{2-τ}lnN for the universality class at hand. We characterize the extremely slow decay of C when τ≈2 and show that for τ=2.1, say, clustering starts to vanish only for networks as large as N=10^{9}.

[1]  Fan Chung Graham,et al.  The Diameter of Sparse Random Graphs , 2001, Adv. Appl. Math..

[2]  Remco van der Hofstad,et al.  Critical window for the configuration model: finite third moment degrees , 2016, 1605.02868.

[3]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[4]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[5]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[6]  A. Martin-Löf,et al.  Generating Simple Random Graphs with Prescribed Degree Distribution , 2006, 1509.06985.

[7]  S. Bornholdt,et al.  Scale-free topology of e-mail networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Ilkka Norros,et al.  On a conditionally Poissonian graph process , 2006, Advances in Applied Probability.

[9]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[10]  Liudmila Ostroumova,et al.  Global Clustering Coefficient in Scale-Free Networks , 2014, WAW.

[11]  M. Newman,et al.  Statistical mechanics of networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Johan van Leeuwaarden,et al.  Giant component sizes in scale-free networks with power-law degrees and cutoffs , 2015, ArXiv.

[13]  Johan van Leeuwaarden,et al.  Scaling limits for critical inhomogeneous random graphs with finite third moments , 2009, 0907.4279.

[14]  Kindra M Kelly-Scumpia,et al.  51 , 2015, Tao te Ching.

[15]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[16]  Dmitri V. Krioukov,et al.  Clustering Implies Geometry in Networks. , 2016, Physical review letters.

[17]  Remco van der Hofstad,et al.  Novel scaling limits for critical inhomogeneous random graphs , 2009, 0909.1472.

[18]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..