Hypertonic Saline Therapy in Cystic Fibrosis: Do Population Shifts Caused by the Osmotic Sensitivity of Infecting Bacteria Explain the Effectiveness of this Treatment?

Cystic fibrosis (CF) is caused by a defect in the CF transmembrane regulator that leads to depletion and dehydration of the airway surface liquid (ASL) of the lung epithelium, providing an environment that can be infected by bacteria leading to increased morbidity and mortality. Pseudomonas aeruginosa chronically infects more than 80% of CF patients and one hallmark of infection is the emergence of a mucoid phenotype associated with a worsening prognosis and more rapid decline in lung function. Hypertonic saline (HS) is a clinically proven treatment that improves mucociliary clearance through partial rehydration of the ASL of the lung. Strikingly, while HS therapy does not alter the prevalence of P. aeruginosa in the CF lung it does decrease the frequency of episodes of acute, severe illness known as infective exacerbations among CF patients. In this article, we propose a hypothesis whereby the positive clinical effects of HS treatment are explained by the osmotic sensitivity of the mucoid sub-population of P. aeruginosa in the CF lung leading to selection against this group in favor of the osmotically resistant non-mucoid variants.

[1]  Thomas Bjarnsholt,et al.  Antibiotic resistance of bacterial biofilms. , 2010, International journal of antimicrobial agents.

[2]  S. Anderson,et al.  Inhaled mannitol improves the hydration and surface properties of sputum in patients with cystic fibrosis. , 2010, Chest.

[3]  T. Tolker-Nielsen,et al.  Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control , 2010, Expert Reviews in Molecular Medicine.

[4]  B. Ryall,et al.  Metabolic profiling of Pseudomonas aeruginosa demonstrates that the anti-sigma factor MucA modulates osmotic stress tolerance. , 2010, Molecular bioSystems.

[5]  D. Hassett,et al.  Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies , 2010, Expert opinion on therapeutic targets.

[6]  G. Pier,et al.  Evaluation of Flagella and Flagellin of Pseudomonas aeruginosa as Vaccines , 2009, Infection and Immunity.

[7]  H Omran,et al.  Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children , 2009, European Respiratory Journal.

[8]  L. Touqui,et al.  Pseudomonas aeruginosa LPS or Flagellin Are Sufficient to Activate TLR-Dependent Signaling in Murine Alveolar Macrophages and Airway Epithelial Cells , 2009, PloS one.

[9]  H. D. Liggitt,et al.  Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia. , 2009, American journal of physiology. Lung cellular and molecular physiology.

[10]  N. Høiby,et al.  Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients , 2009, Pediatric pulmonology.

[11]  J. Davies,et al.  Bugs, biofilms, and resistance in cystic fibrosis. , 2009, Respiratory care.

[12]  V. McDonald,et al.  Nebulised hypertonic saline for cystic fibrosis. , 2009, The Cochrane database of systematic reviews.

[13]  Joseph O Matu,et al.  Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. , 2009, Trends in microbiology.

[14]  J. Bundy,et al.  Time-Resolved Metabolic Footprinting for Nonlinear Modeling of Bacterial Substrate Utilization , 2009, Applied and Environmental Microbiology.

[15]  J. Foweraker Recent advances in the microbiology of respiratory tract infection in cystic fibrosis , 2008, British medical bulletin.

[16]  Colin Wallis,et al.  Bronchial provocation testing with dry powder mannitol in children with cystic fibrosis , 2008, Pediatric pulmonology.

[17]  M. Surette,et al.  A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients , 2008, Proceedings of the National Academy of Sciences.

[18]  Bruce A. Stanton,et al.  Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. , 2008, Pulmonary pharmacology & therapeutics.

[19]  T. C. Briles,et al.  Inhibitory effects of hypertonic saline on P. aeruginosa motility. , 2008, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[20]  S. Anderson,et al.  Inhaled mannitol improves lung function in cystic fibrosis. , 2008, Chest.

[21]  M. Wolfgang,et al.  Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. , 2008, American journal of respiratory and critical care medicine.

[22]  M. Gadjeva,et al.  Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. , 2008, Trends in molecular medicine.

[23]  S. M. Kirov,et al.  Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. , 2007, Microbiology.

[24]  R. Boucher Cystic fibrosis: a disease of vulnerability to airway surface dehydration. , 2007, Trends in molecular medicine.

[25]  Alan R. Brown,et al.  Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. , 2007, Future microbiology.

[26]  M. Stanton,et al.  Cystic fibrosis mortality and survival in the UK: 1947–2003 , 2007, European Respiratory Journal.

[27]  T. Murray,et al.  Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients , 2007, Current opinion in pediatrics.

[28]  C. Goss,et al.  Exacerbations in cystic fibrosis · 1: Epidemiology and pathogenesis , 2007, Thorax.

[29]  S. Randell,et al.  Cystic Fibrosis and Other Respiratory Diseases of Impaired Mucus Clearance , 2007, Toxicologic pathology.

[30]  S. M. Kirov,et al.  Biofilm dispersal and exacerbations of cystic fibrosis lung disease , 2006, Pediatric pulmonology.

[31]  F. Ratjen Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis , 2006, Current opinion in pulmonary medicine.

[32]  A. J. Leech,et al.  Cell wall‐inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22 (AlgT) and the AlgW and Prc proteases , 2006, Molecular microbiology.

[33]  A. Verkman,et al.  Hypertonic Saline Therapy in Cystic Fibrosis , 2006, Journal of Biological Chemistry.

[34]  M. Whiteley,et al.  Microarray Analysis of the Osmotic Stress Response in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[35]  Mark R Elkins,et al.  A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. , 2006, The New England journal of medicine.

[36]  M. Knowles,et al.  Mucus clearance and lung function in cystic fibrosis with hypertonic saline. , 2006, The New England journal of medicine.

[37]  J. Davies Current and Novel Antimicrobial Approaches , 2005 .

[38]  D. Hassett,et al.  Pseudomonas aeruginosa Biofilm Infections in Cystic Fibrosis , 2005 .

[39]  D. VanDevanter,et al.  How much do Pseudomonas biofilms contribute to symptoms of pulmonary exacerbation in cystic fibrosis? , 2005, Pediatric pulmonology.

[40]  D. Wozniak,et al.  Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis , 2005, Molecular microbiology.

[41]  A. Chakrabarty,et al.  The algT ( algU ) gene of Pseudomonas aeruginosa , a key regulator involved in alginate biosynthesis , encodes an alternative a-factor (-E ) ( cystic fibrosis / virulence / in vitro transcription ) , 2005 .

[42]  H. Baker,et al.  MucA-Mediated Coordination of Type III Secretion and Alginate Synthesis in Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[43]  D. Hassett,et al.  The Transcriptional Regulator AlgR Controls Cyanide Production in Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[44]  M. Hazucha,et al.  Primary ciliary dyskinesia: diagnostic and phenotypic features. , 2004, American journal of respiratory and critical care medicine.

[45]  R. Gibson,et al.  Pathophysiology and management of pulmonary infections in cystic fibrosis. , 2003, American journal of respiratory and critical care medicine.

[46]  V. Deretic,et al.  Microarray Analysis of Global Gene Expression in Mucoid Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[47]  Gerald B. Pier,et al.  Lung Infections Associated with Cystic Fibrosis , 2002, Clinical Microbiology Reviews.

[48]  V. Deretic,et al.  Global Genomic Analysis of AlgU (σE)-Dependent Promoters (Sigmulon) in Pseudomonas aeruginosa and Implications for Inflammatory Processes in Cystic Fibrosis , 2002, Journal of bacteriology.

[49]  S. Molin,et al.  Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function , 2001, Journal of bacteriology.

[50]  F. Ratjen Changes in strategies for optimal antibacterial therapy in cystic fibrosis. , 2001, International journal of antimicrobial agents.

[51]  M. Hodson,et al.  Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. , 2000, The European respiratory journal.

[52]  V. Deretic,et al.  Membrane‐to‐cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients , 2000, Molecular microbiology.

[53]  S. Anderson,et al.  The effect of inhaled mannitol on bronchial mucus clearance in cystic fibrosis patients: a pilot study. , 1999, The European respiratory journal.

[54]  S. Molin,et al.  Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. , 1999, Microbiology.

[55]  S. Randell,et al.  Evidence for Periciliary Liquid Layer Depletion, Not Abnormal Ion Composition, in the Pathogenesis of Cystic Fibrosis Airways Disease , 1998, Cell.

[56]  M. King,et al.  Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis. , 1997, Thorax.

[57]  V. Deretic,et al.  Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection , 1997, Infection and immunity.

[58]  M. King,et al.  Rheology of cystic fibrosis sputum after in vitro treatment with hypertonic saline alone and in combination with recombinant human deoxyribonuclease I. , 1997, American journal of respiratory and critical care medicine.

[59]  J. Mattick,et al.  The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[61]  V. Deretic,et al.  Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis , 1996, Journal of bacteriology.

[62]  M. King,et al.  Effect of hypertonic saline, amiloride, and cough on mucociliary clearance in patients with cystic fibrosis. , 1996, American journal of respiratory and critical care medicine.

[63]  A. Chakrabarty,et al.  The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative sigma factor (sigma E). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Martin,et al.  Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[65]  F. Collins,et al.  Cystic fibrosis: molecular biology and therapeutic implications. , 1992, Science.

[66]  S. Schwarzmann,et al.  Antiphagocytic Effect of Slime from a Mucoid Strain of Pseudomonas aeruginosa , 1971, Infection and immunity.

[67]  J. Gustafson,et al.  Cystic Fibrosis , 2009, Journal of the Iowa Medical Society.