Evaluation of MODIS - Aqua Chlorophyll-a Algorithms in the Basilicata Ionian Coastal Waters

Standard chlorophyll-a (chl-a) algorithms, which rely on Moderate Resolution Imaging Spectro-radiometer (MODIS) data aboard the Aqua satellite, usually show different performances depending on the area under consideration. In this paper, we assessed their accuracy in retrieving the chl-a concentration in the Basilicata Ionian Coastal waters (Ionian Sea, South of Italy). The outputs of one empirical (Med-OC3) and two semi-analytical algorithms, the Garver–Siegel–Maritorena (GSM) and the Generalized Inherent Optical Properties (GIOP) model, have been compared with ground measurements acquired during three different measurement campaigns. The achieved results prove the poor accuracy (adjusted R2 value of 0.12) of the investigated empirical algorithm and, conversely, the good performance of semi-analytical algorithms (adjusted R2 ranging from 0.74 to 0.79). The co-existence of Coloured Dissolved Organic Matter (CDOM) and Non-Algal Particles (NAP) has likely determined large errors in the reflectance ratios used in the OCx form algorithms. Finally, a local scale assessment of the bio-optical properties, on the basis of the in situ dataset, allowed for the definition of an operational local scale-tuned version of the MODIS chl-a algorithm, which assured increased accuracy (adjusted R2 value of 0.86). Such a tuned algorithm version can provide useful information which can be used by local authorities within regional management systems.

[1]  Peter Regner,et al.  The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms , 2015 .

[2]  Huping Ye,et al.  Spectral Classification of the Yellow Sea and Implications for Coastal Ocean Color Remote Sensing , 2016, Remote. Sens..

[3]  Federica Foglini,et al.  Particle transport in the Bari Canyon (southern Adriatic Sea) , 2007 .

[4]  K. Carder,et al.  Semianalytic Moderate‐Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio‐optical domains based on nitrate‐depletion temperatures , 1999 .

[5]  Anatoly A. Gitelson,et al.  Towards a unified approach for remote estimation of chlorophyll‐a in both terrestrial vegetation and turbid productive waters , 2003 .

[6]  P Jeremy Werdell,et al.  Generalized ocean color inversion model for retrieving marine inherent optical properties. , 2013, Applied optics.

[7]  C. Davis,et al.  Method to derive ocean absorption coefficients from remote-sensing reflectance. , 1996, Applied optics.

[8]  Dale A. Kiefer,et al.  Reflectance spectroscopy of marine phytoplankton. Part 1. Optical properties as related to age and growth rate1 , 1979 .

[9]  S. Marullo,et al.  Open Waters Optical Remote Sensing of the Mediterranean Sea , 2008 .

[10]  James W. Brown,et al.  A semianalytic radiance model of ocean color , 1988 .

[11]  Valeria Satriano,et al.  On the Potential of Robust Satellite Techniques Approach for SPM Monitoring in Coastal Waters: Implementation and Application over the Basilicata Ionian Coastal Waters Using MODIS-Aqua , 2016, Remote. Sens..

[12]  Lisa R. Moore,et al.  Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples , 2000 .

[13]  P. J. Werdell,et al.  A multi-sensor approach for the on-orbit validation of ocean color satellite data products , 2006 .

[14]  A. M. El-Otify,et al.  Evaluation of the physicochemical and chlorophyll-a conditions of a subtropical aquaculture in Lake Nasser area, Egypt , 2015 .

[15]  Andrea Pisano,et al.  The Copernicus Marine Environment Monitoring Service Ocean State Report , 2016 .

[16]  Nilton Nobuhiro Imai,et al.  Estimation of Chlorophyll-a Concentration from Optimizing a Semi-Analytical Algorithm in Productive Inland Waters , 2018, Remote. Sens..

[17]  Peng Wang,et al.  Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color. , 2005, Applied optics.

[18]  J. Aiken,et al.  Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment. , 2006, Applied optics.

[19]  A. Grandi,et al.  Product User Manual , 2011 .

[20]  Robert A. Arnone,et al.  Watercolors in the Coastal Zone: What Can We See? , 2004 .

[21]  Priscila Goela,et al.  Using remote sensing as a support to the implementation of the European Marine Strategy Framework Directive in SW Portugal , 2015 .

[22]  John J. Cullen,et al.  Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient , 2002 .

[23]  Stéphane Maritorena,et al.  Optimization of a semianalytical ocean color model for global-scale applications. , 2002, Applied optics.

[24]  R. Sciarra,et al.  Variability of Adriatic Sea coastal turbid waters from SeaWiFS imagery , 2007 .

[25]  D. Stramski,et al.  An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea , 2004 .

[26]  Annick Bricaud,et al.  Retrieval of Colored Detrital Matter (CDM) light absorption coefficients in the Mediterranean Sea using field and satellite ocean color radiometry: Evaluation of bio-optical inversion models , 2016 .

[27]  Giovanni Coppini,et al.  A Structured and Unstructured grid Relocatable ocean platform for Forecasting (SURF) , 2016 .

[28]  D. Antoine,et al.  Algal biomass and sea surface temperature in the Mediterranean basin intercomparison of data from various satellite sensors, and implications for primary production estimates , 2002 .

[29]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[30]  A. Gitelson,et al.  A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters , 2009 .

[31]  Stanford B. Hooker,et al.  Coastal Atmosphere and Sea Time Series (CoASTS) , 2002 .

[32]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[33]  Sergio Rossi,et al.  The Gulf of Taranto (Southern Italy): Seismic stratigraphy and shallow structure , 1983 .

[34]  J. Mercado,et al.  A new regional algorithm for estimating chlorophyll-a in the Alboran Sea (Mediterranean Sea) from MODIS-Aqua satellite imagery , 2016 .

[35]  R. Arnone,et al.  Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. , 2002, Applied optics.

[36]  B Gentili,et al.  Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution. , 1991, Applied optics.

[37]  Jennifer P. Cannizzaro,et al.  Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters , 2006 .

[38]  Emanuele Organelli,et al.  Relationships between phytoplankton light absorption, pigment composition and size structure in offshore areas of the Mediterranean Sea , 2011 .

[39]  F. D’Ortenzio,et al.  On the trophic regimes of the Mediterranean Sea: a satellite analysis , 2008 .

[40]  Renata Archetti,et al.  A coupled wave–3-D hydrodynamics model of the Taranto Sea (Italy): amultiple-nesting approach , 2016 .

[41]  Jeremy Werdell Global Bio-optical Algorithms for Ocean Color Satellite Applications , 2009 .

[42]  K. Ruddick,et al.  Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. , 2000, Applied optics.

[43]  Anatoly A. Gitelson,et al.  Satellite Estimation of Chlorophyll-$a$ Concentration Using the Red and NIR Bands of MERIS—The Azov Sea Case Study , 2009, IEEE Geoscience and Remote Sensing Letters.

[44]  H. Claustre,et al.  Variability in the chlorophyll‐specific absorption coefficients of natural phytoplankton: Analysis and parameterization , 1995 .

[45]  Chuanmin Hu,et al.  On the consistency of MODIS chlorophyll $a$ products in the northern South China Sea , 2014 .

[46]  B. Franz,et al.  A Generalized Framework for Modeling of Inherent Optical Properties in Ocean Remote Sensing Applications , 2010 .

[47]  B Gentili,et al.  Diffuse reflectance of oceanic waters. II Bidirectional aspects. , 1993, Applied optics.

[48]  Carlo Brandini,et al.  Evaluation of empirical and semi-analytical chlorophyll algorithms in the Ligurian and North Tyrrhenian Seas , 2012 .

[49]  Teodosio Lacava,et al.  T-FLaP advances: instrumental and operative implementation , 2012 .

[50]  Giovanni Coppini,et al.  Marine Rapid Environmental Assessment in the Gulf of Taranto: a multiscale approach , 2016 .

[51]  R. Carlucci ‘Chlorophyll a’ multi-temporal analysis in coastal waters with MODIS data , 2011 .

[52]  Menghua Wang,et al.  Seawifs Postlaunch Calibration and Validation Analyses , 2013 .

[53]  T. Lacava,et al.  Investigating the chlorophyll-a variability in the Gulf of Taranto (North-western Ionian Sea) by a multi-temporal analysis of MODIS-Aqua Level 3/Level 2 data , 2018 .

[54]  D. Mishra,et al.  Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters , 2012 .

[55]  D. Siegel,et al.  Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea , 1997 .

[56]  Annick Bricaud,et al.  Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations , 2004 .

[57]  H. Dierssen Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate , 2010, Proceedings of the National Academy of Sciences.

[58]  Menghua Wang,et al.  Remote Sensing of Inherent Optical Properties : Fundamentals , 2009 .

[59]  Rosa Maria Cavalli,et al.  Retrieval of Sea Surface Temperature from MODIS Data in Coastal Waters , 2017 .

[60]  F. D’Ortenzio,et al.  Interannual variability of the Mediterranean trophic regimes from ocean color satellites , 2015 .

[61]  J. Adolf,et al.  Bio-optical model for Chesapeake Bay and the Middle Atlantic Bight , 2004 .

[62]  M. Schaepman,et al.  Review of constituent retrieval in optically deep and complex waters from satellite imagery , 2012 .

[63]  G. Almandoz,et al.  Evaluation of SeaWiFS and MODIS chlorophyll‐a products in the Argentinean Patagonian Continental Shelf (38° S–55° S) , 2009 .

[64]  Brice K. Grunert,et al.  Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges , 2018 .

[65]  Alessandro Grandi,et al.  Multi-nest high-resolution model of submesoscale circulation features in the Gulf of Taranto , 2017, Ocean Dynamics.

[66]  W. Gregg,et al.  Global and regional evaluation of the SeaWiFS chlorophyll data set , 2004 .

[67]  F. D’Ortenzio,et al.  Validation of empirical SeaWiFS algorithms for chlorophyll-a retrieval in the Mediterranean Sea: A case study for oligotrophic seas , 2002 .

[68]  P. Oddo,et al.  A study of the hydrographic conditions in the Adriatic Sea from numerical modelling and direct observations (2000–2008) , 2011 .

[69]  Giovanni Coppini,et al.  Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas , 2016 .

[70]  Giuseppe Zibordi,et al.  Use of the novelty detection technique to identify the range of applicability of empirical ocean color algorithms , 2003, IEEE Trans. Geosci. Remote. Sens..

[71]  D. Stramski,et al.  Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering. , 2000, Applied optics.

[72]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. , 1999, Applied optics.

[73]  Giovanni Coppini,et al.  River runoff influences on the Central Mediterranean overturning circulation , 2018, Climate Dynamics.

[74]  Stefano Pignatti,et al.  An Empirical Ocean Colour Algorithm for Estimating the Contribution of Coloured Dissolved Organic Matter in North-Central Western Adriatic Sea , 2017, Remote. Sens..

[75]  N. Blough,et al.  Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling , 2002 .

[76]  H. B. Menon,et al.  Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea , 2013 .

[77]  Dariusz Stramski,et al.  Optical properties of photosynthetic picoplankton in different physiological states as affected by growth irradiance , 1990 .

[78]  E. Boss,et al.  Modeling the spectral shape of absorption by chromophoric dissolved organic matter , 2004 .

[79]  Guido Pasquariello,et al.  Shoreline variations and coastal dynamics: A space-time data analysis of the Jonian littoral, Italy , 2013 .

[80]  Bryan A. Franz,et al.  Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three‐band reflectance difference , 2012 .

[81]  C. McClain,et al.  Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume VI: Special Topics in Ocean Optics Protocols, Part 2 , 2004 .

[82]  Frank E. Hoge,et al.  An analysis of model and radiance measurement errors , 1996 .

[83]  F. D’Ortenzio,et al.  The colour of the Mediterranean Sea: Global versus regional bio-optical algorithms evaluation and implication for satellite chlorophyll estimates , 2007 .

[84]  Gary B. Brassington,et al.  Operational Oceanography in the 21st Century , 2011 .

[85]  Tiit Kutser,et al.  Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea , 2017, Remote. Sens..

[86]  Rosalia Santoleri,et al.  Seasonal to interannual phytoplankton response to physical processes in the Mediterranean Sea from satellite observations , 2012 .

[87]  Motoaki Kishino,et al.  Light Utilization Efficiency and Quantum Yield of Phytoplankton in a Thermally Stratified Seai , 1986 .

[88]  F. D’Ortenzio,et al.  Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project) , 2008 .

[89]  Paul M. DiGiacomo,et al.  Uncertainties and applications of satellite-derived coastal water quality products , 2017 .