Towards Deep Integration of Electronics and Photonics

[1]  M. Stockman,et al.  Nanoplasmonic sensing and detection , 2015, Science.

[2]  Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. , 2009 .

[3]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[4]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[5]  R. H. Ritchie,et al.  Radiative Decay of Coulomb-Stimulated Plasmons in Spheres , 1968 .

[6]  O-Kyun Kwon,et al.  Integrated InP Polarization Rotator Using the Plasmonic Effect , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[7]  Rubab Amin,et al.  Waveguide-based electro-absorption modulator performance: comparative analysis. , 2018, Optics express.

[8]  Wolfgang Freude,et al.  Surface plasmon polariton absorption modulator. , 2011, Optics express.

[9]  H. Ye,et al.  Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films , 2018, Science and technology of advanced materials.

[10]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[11]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[12]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[13]  Younan Xia,et al.  Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[14]  A. Modelli,et al.  Fragmentation of chlorpyrifos by thermal electron attachment: a likely relation to its metabolism and toxicity. , 2018, Physical chemistry chemical physics : PCCP.

[15]  Ulf Peschel,et al.  Nanoscale conducting oxide PlasMOStor. , 2014, Nano letters.

[16]  D. Pines A COLLECTIVE DESCRIPTION OF ELECTRON INTERACTIONS: IV. ELECTRON INTERACTION IN METALS , 1953 .

[17]  I. Pshenichnyuk Pair interactions of heavy vortices in quantum fluids , 2017, 1705.10072.

[18]  C. Leung,et al.  ITO/Au/ITO sandwich structure for near-infrared plasmonics. , 2014, ACS applied materials & interfaces.

[19]  J. M. Elson,et al.  Photon Interactions at a Rough Metal Surface , 1971 .

[20]  Jon-Paul Maria,et al.  Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. , 2009, Optics letters.

[21]  Jonathan Grandidier,et al.  Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. , 2009, Nano letters.

[22]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[23]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[24]  Emmanouil E. Kriezis,et al.  Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model , 2017 .

[25]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[26]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[27]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[28]  B. Shen,et al.  Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. , 2017, Optics express.

[29]  L. Caspani,et al.  Enhanced Nonlinear Refractive Index in ε-Near-Zero Materials. , 2016, Physical review letters.

[30]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[31]  J. Stewart Aitchison,et al.  A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes , 2014 .

[32]  A. Roberts,et al.  Plasmonic circuits for manipulating optical information , 2016 .

[33]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[34]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[35]  A. I. Fokin,et al.  Temperature dependence of the mean autodetachment lifetime of the p-benzoquinone molecular radical anion. , 2006, Rapid communications in mass spectrometry : RCM.

[36]  James S. Fakonas,et al.  Two-plasmon quantum interference , 2014, Nature Photonics.

[37]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .

[38]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[39]  I. Pshenichnyuk Static and dynamic properties of heavily doped quantum vortices , 2017, 1705.10068.

[40]  S. Thongrattanasiri,et al.  Quantum finite-size effects in graphene plasmons. , 2012, ACS nano.

[41]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[42]  Omer Salihoglu,et al.  Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping , 2012 .

[43]  Zhanghua Han,et al.  Radiation guiding with surface plasmon polaritons , 2013, Reports on progress in physics. Physical Society.

[44]  Minghao Qi,et al.  Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide. , 2015, Optics express.

[45]  J. Dionne,et al.  Silicon-Based Plasmonics for On-Chip Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  T. Davis,et al.  Measuring subwavelength phase differences with a plasmonic circuit--an example of nanoscale optical signal processing. , 2014, Optics letters.

[47]  M. D. Lukin,et al.  Quantum Plasmonic Circuits , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  K. Mistry,et al.  The High-k Solution , 2007, IEEE Spectrum.

[49]  Colin Nuckolls,et al.  Chemical principles of single-molecule electronics , 2016 .

[50]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[51]  Viktor A. Podolskiy,et al.  Transparent conductive oxides: Plasmonic materials for telecom wavelengths , 2011 .

[52]  Yeshaiahu Fainman,et al.  Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. , 2004, Optics express.

[53]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[54]  L. Dominici,et al.  Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 microm. , 2009, Optics letters.

[55]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[56]  Wangshi Zhao,et al.  Ultracompact Electroabsorption Modulators Based on Tunable Epsilon-Near-Zero-Slot Waveguides , 2012, IEEE Photonics Journal.

[57]  A. Modelli,et al.  Interconnections between dissociative electron attachment and electron-driven biological processes , 2018 .

[58]  Junghyun Park,et al.  Electro-optical modulation of a silicon waveguide with an "epsilon-near-zero" material. , 2013, Optics express.

[59]  G. Wurtz,et al.  All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity [Invited] , 2018 .

[60]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[61]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[62]  James S. Harris,et al.  Ultra-Compact and Low-Loss Polarization Rotator Based on Asymmetric Hybrid Plasmonic Waveguide , 2013, IEEE Photonics Technology Letters.

[63]  Pavlos G. Lagoudakis,et al.  A room-temperature organic polariton transistor , 2019, Nature Photonics.

[64]  G. Exarhos,et al.  Discovery-based design of transparent conducting oxide films , 2007 .

[65]  Timothy J. Davis,et al.  Surface plasmon hybridization and exciton coupling , 2012 .

[66]  J. Robertson High dielectric constant oxides , 2004 .

[67]  Richard Soref,et al.  Longwave plasmonics on doped silicon and silicides. , 2008, Optics express.

[68]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[69]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[70]  Mustafa Sarimollaoglu,et al.  Spaser as a biological probe , 2017, Nature Communications.

[71]  J. Hopfield a Quantum-Mechanical Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. , 1958 .

[72]  Moon-Ho Jo,et al.  Near-field electrical detection of optical plasmons and single plasmon sources , 2009, Proceedings of the Fourth European Conference on Antennas and Propagation.

[73]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[74]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[75]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[76]  Barnett,et al.  Quantization of the electromagnetic field in dielectrics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[77]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[78]  S. Pshenichnyuk,et al.  Dissociative electron attachment in selected haloalkanes. , 2006, Rapid communications in mass spectrometry : RCM.

[79]  Fan Zhang,et al.  Indium Tin Oxide Based Dual-Polarization Electro-Optic Intensity Modulator on a Single Silicon Waveguide , 2018, Journal of Lightwave Technology.

[80]  J. Leuthold,et al.  High-speed plasmonic modulator in a single metal layer , 2017, Science.

[81]  C. Powell,et al.  Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium , 1960 .

[82]  Pavlos G. Lagoudakis,et al.  Realizing the classical XY Hamiltonian in polariton simulators. , 2016, Nature materials.

[83]  V. Podolskiy,et al.  Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. , 2007, Optics express.

[84]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[85]  J. Hone,et al.  Fundamental limits to graphene plasmonics , 2018, Nature.

[86]  Q. Gong,et al.  Epsilon‐Near‐Zero Photonics: A New Platform for Integrated Devices , 2018 .

[87]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[88]  Volker J. Sorger,et al.  Review and perspective on ultrafast wavelength‐size electro‐optic modulators , 2015 .

[89]  V. Drachev,et al.  New mechanism of plasmons specific for spin-polarized nanoparticles , 2019, Scientific Reports.

[90]  N. Berloff,et al.  Inelastic scattering of xenon atoms by quantized vortices in superfluids , 2016, 1608.04157.

[91]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[92]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[93]  M. Swillam,et al.  Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides , 2018 .

[94]  I. Pshenichnyuk,et al.  Motor effect in electron transport through a molecular junction with torsional vibrations , 2010, 1007.4826.

[95]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[96]  Jung Jin Ju,et al.  Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. , 2008, Optics express.

[97]  Robert W. Boyd,et al.  Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region , 2016, Science.

[98]  Nikolay I. Zheludev,et al.  Roadmap on plasmonics , 2018 .

[99]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.