Comparative genomics and systematics of Betaphycus, Eucheuma, and Kappaphycus (Solieriaceae: Rhodophyta) based on mitochondrial genome
暂无分享,去创建一个
Xumin Wang | Tao Liu | Na Liu | Shan Chi | Cui Liu | Guoliang Wang | Xianming Tang | Yuemei Jin | Yue Li | Lei Zhang | Hongxin Yin | Jing Zhang | Hai-Yan Wang | M. D. N. Meinita
[1] J. Brodie,et al. Advancing the taxonomy of economically important red seaweeds (Rhodophyta) , 2017 .
[2] Tun-Wen Pai,et al. Complete chloroplast genome of Gracilaria firma (Gracilariaceae, Rhodophyta), with discussion on the use of chloroplast phylogenomics in the subclass Rhodymeniophycidae , 2017, BMC Genomics.
[3] G. Boo,et al. Mitogenomes from type specimens, a genotyping tool for morphologically simple species: ten genomes of agar-producing red algae , 2016, Scientific Reports.
[4] I. Moon,et al. The ethanol extract of the rhodophyte Kappaphycus alvarezii promotes neurite outgrowth in hippocampal neurons , 2016, Journal of Applied Phycology.
[5] B. Chain,et al. The sequence of sequencers: The history of sequencing DNA , 2016, Genomics.
[6] Jeffery R. Hughey,et al. Mitochondrial and plastid genome analysis of the heteromorphic red alga Mastocarpus papillatus (C. Agardh) Kützing (Phyllophoraceae, Rhodophyta) reveals two characteristic florideophyte organellar genomes , 2016, Mitochondrial DNA. Part B, Resources.
[7] S. Y. Kim,et al. Highly Conserved Mitochondrial Genomes among Multicellular Red Algae of the Florideophyceae , 2015, Genome biology and evolution.
[8] L. Pereira,et al. A Comparative Analysis of Carrageenans Produced by Underutilized versus Industrially Utilized Macroalgae (Gigartinales, Rhodophyta) , 2015 .
[9] A. Lluisma,et al. The mitochondrial genome of the red alga Kappaphycus striatus ("Green Sacol" variety): complete nucleotide sequence, genome structure and organization, and comparative analysis. , 2014, Marine genomics.
[10] De‐Zhu Li,et al. Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (poaceae). , 2014, Systematic biology.
[11] L. Liao,et al. Phylogeny of Betaphycus (Gigartinales, Rhodophyta) as inferred from COI sequences and morphological observations on B. philippinensis , 2014, Journal of Applied Phycology.
[12] S. Phang,et al. Phylogenetic relationship of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Malaysia , 2013, Journal of Applied Phycology.
[13] Xumin Wang,et al. Complete Sequences of the Mitochondrial DNA of the Wild Gracilariopsis lemaneiformis and Two Mutagenic Cultivated Breeds (Gracilariaceae, Rhodophyta) , 2012, PloS one.
[14] M. Nei,et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.
[15] Ramón Doallo,et al. ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..
[16] A. Sherwood,et al. A molecular method for identification of the morphologically plastic invasive algal genera Eucheuma and Kappaphycus (Rhodophyta, Gigartinales) in Hawaii , 2009, Journal of Applied Phycology.
[17] Ralph Bock,et al. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes , 2007, Current Genetics.
[18] Ziheng Yang. PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.
[19] Alexandros Stamatakis,et al. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..
[20] Peter Schattner,et al. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs , 2005, Nucleic Acids Res..
[21] F. Blattner,et al. Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.
[22] B. Lang,et al. Mitochondrial genomes: anything goes. , 2003, Trends in genetics : TIG.
[23] John P. Huelsenbeck,et al. MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..
[24] Wei Qian,et al. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.
[25] S. Fredericq,et al. Observations on the phylogenetic systematics and biogeography of the Solieriaceae (Gigartinales, Rhodophyta) inferred from rbcL sequences and morphological evidence , 1999, Hydrobiologia.
[26] J. Taanman,et al. The mitochondrial genome: structure, transcription, translation and replication. , 1999, Biochimica et biophysica acta.
[27] J. Boore,et al. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. , 1998, Current opinion in genetics & development.
[28] Tibor Vellai,et al. A New Aspect to the Origin and Evolution of Eukaryotes , 1998, Journal of Molecular Evolution.
[29] W. Martin,et al. The hydrogen hypothesis for the first eukaryote , 1998, Nature.
[30] H. J. Bixler. Recent developments in manufacturing and marketing carrageenan , 1996, Hydrobiologia.
[31] C. Boyen,et al. Complete sequence of the mitochondrial DNA of the rhodophyte Chondrus crispus (Gigartinales). Gene content and genome organization. , 1995, Journal of molecular biology.
[32] D. A. Clayton,et al. Replication of animal mitochondrial DNA , 1982, Cell.
[33] Nicolas Dierckxsens,et al. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. , 2016, Nucleic acids research.
[34] J. West,et al. Systematics and genetic variation in commercial Kappaphycus and Eucheuma (Solieriaceae, Rhodophyta) , 2006 .
[35] T. A. Hall,et al. BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .
[36] L. Bonen. Mitochondrial genomes: A paradigm of organizational diversity , 1998 .