Recombination and the population structures of bacterial pathogens.

The population structures of bacterial species are complex and often controversial. To a large extent, this is due to uncertainty about the frequency and impact of recombination in bacteria. The existence of clones within bacterial populations, and of linkage disequilibrium between alleles at different loci, is often cited as evidence for low rates of recombination. However, clones and linkage disequilibrium are almost inevitable in species that divide by binary fission and can be present in populations where recombination is frequent. In recent years, it has become possible to directly compare rates of recombination in different species. These studies indicate that in many bacterial species, including Neisseria meningitidis, Streptococcus pneumoniae, and Staphylococcus aureus, evolutionary change at neutral (housekeeping) loci is more likely to occur by recombination than mutation and can result in the elimination of any deep-rooted phylogenetic signal. In such species, the long-term evolution of the population is dominated by recombination, but this does not occur at a sufficiently high frequency to prevent the emergence of adaptive clones, although these are relatively short-lived and rapidly diversify.

[1]  E. J. Feil,et al.  Carried Meningococci in the Czech Republic: a Diverse Recombining Population , 2000, Journal of Clinical Microbiology.

[2]  M Achtman,et al.  Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Brian G. Spratt,et al.  Multilocus Sequence Typing of Streptococcus pyogenes and the Relationships between emm Type and Clone , 2001, Infection and Immunity.

[4]  E. Holmes,et al.  Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. Feil,et al.  Population structure and evolutionary dynamics of pathogenic bacteria , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[6]  Alyssa C. Bumbaugh,et al.  Parallel evolution of virulence in pathogenic Escherichia coli , 2000, Nature.

[7]  Carl T. Bergstrom,et al.  Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[9]  J. M. Smith,et al.  Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. , 2000, Genetics.

[10]  Nicholas P. J. Day,et al.  Multilocus Sequence Typing for Characterization of Methicillin-Resistant and Methicillin-Susceptible Clones ofStaphylococcus aureus , 2000, Journal of Clinical Microbiology.

[11]  Brian G. Spratt,et al.  Identification of the Major Spanish Clones of Penicillin-Resistant Pneumococci via the Internet Using Multilocus Sequence Typing , 2000, Journal of Clinical Microbiology.

[12]  M Achtman,et al.  Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Achtman,et al.  The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. , 1999, Molecular biology and evolution.

[14]  E. Holmes,et al.  The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. , 1999, Molecular biology and evolution.

[15]  B. Spratt Multilocus sequence typing: molecular typing of bacterial pathogens in an era of rapid DNA sequencing and the internet. , 1999, Current opinion in microbiology.

[16]  D. Maneval,et al.  A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria , 1999, Nature.

[17]  M. Achtman,et al.  Recombination and clonal groupings within Helicobacter pylori from different geographical regions , 2012 .

[18]  B. Spratt,et al.  A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. , 1998, Microbiology.

[19]  J. M. Smith,et al.  Free recombination within Helicobacter pylori. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. M. Smith,et al.  Detecting recombination from gene trees. , 1998, Molecular biology and evolution.

[22]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Daniel H. Huson,et al.  SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..

[24]  T. Whittam,et al.  Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Achtman,et al.  Clonal descent and microevolution of Neisseria meningitidis during 30 years of epidemic spread , 1997, Molecular microbiology.

[26]  R Milkman,et al.  Recombination and population structure in Escherichia coli. , 1997, Genetics.

[27]  J Hacker,et al.  Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution , 1997, Molecular microbiology.

[28]  E. Holmes,et al.  A likelihood method for the detection of selection and recombination using nucleotide sequences. , 1997, Molecular biology and evolution.

[29]  B. Spratt,et al.  Interspecies recombination, and phylogenetic distortions, within the glutamine synthetase and shikimate dehydrogenase genes of Neisseria meningitidis and commensal Neisseria species , 1997, Molecular microbiology.

[30]  B. Spratt,et al.  Arginine-, hypoxanthine-, uracil-requiring isolates of Neisseria gonorrhoeae are a clonal lineage with a non-clonal population. , 1997, Microbiology.

[31]  D. Guttman,et al.  Recombination and clonality in natural populations of Escherichia coli. , 1997, Trends in ecology & evolution.

[32]  Howard Ochman,et al.  Pathogenicity Islands: Bacterial Evolution in Quantum Leaps , 1996, Cell.

[33]  D. Graham,et al.  Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure , 1996, Journal of bacteriology.

[34]  R. May,et al.  The maintenance of strain structure in populations of recombining infectious agents , 1996, Nature Medicine.

[35]  F. Taddei,et al.  Genetic barriers among bacteria. , 1996, Trends in microbiology.

[36]  P. Reeves,et al.  Gene transfer is a major factor in bacterial evolution. , 1996, Molecular biology and evolution.

[37]  J. Musser Molecular population genetic analysis of emerged bacterial pathogens: selected insights. , 1996, Emerging infectious diseases.

[38]  B. Spratt,et al.  Electrophoretic variation in adenylate kinase of Neisseria meningitidis is due to inter- and intraspecies recombination. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Fleischmann,et al.  Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. , 1995, Science.

[40]  E. Soutschek,et al.  Molecular analysis of genes encoding outer surface protein C (OspC) of Borrelia burgdorferi sensu lato: relationship to ospA genotype and evidence of lateral gene exchange of ospC , 1995, Journal of clinical microbiology.

[41]  T. Whittam,et al.  Molecular population genetic analysis of the streptokinase gene of Streptococcus pyogenes: mosaic alleles generated by recombination , 1995, Molecular microbiology.

[42]  D. Dykhuizen,et al.  Clonal divergence in Escherichia coli as a result of recombination, not mutation. , 1994, Science.

[43]  B. Spratt,et al.  Further evidence for the non-clonal population structure of Neisseria gonorrhoeae: extensive genetic diversity within isolates of the same electrophoretic type. , 1994, Microbiology.

[44]  J Davies,et al.  Inactivation of antibiotics and the dissemination of resistance genes. , 1994, Science.

[45]  B. Spratt Resistance to antibiotics mediated by target alterations. , 1994, Science.

[46]  T. Whittam,et al.  Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[47]  B. Spratt,et al.  Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation , 1994, Journal of bacteriology.

[48]  D. van Soolingen,et al.  DNA fingerprinting of Mycobacterium tuberculosis. , 1994, Methods in enzymology.

[49]  M. O'rourke,et al.  Genetic structure of Neisseria gonorrhoeae populations: a non-clonal pathogen. , 1993, Journal of general microbiology.

[50]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[51]  P. Reeves,et al.  Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. , 1993, Trends in genetics : TIG.

[52]  P. Reeves Variation in O-antigens, niche-specific selection and bacterial populations. , 1992, FEMS microbiology letters.

[53]  R. Selander,et al.  Evolutionary genetics of the proline permease gene (putP) and the control region of the proline utilization operon in populations of Salmonella and Escherichia coli , 1992, Journal of bacteriology.

[54]  J. Zhou,et al.  Sequence diversity within the argF, fbp and recA genes of natural isolates of Neisseria meningitidis: interspecies recombination within the argF gene , 1992, Molecular microbiology.

[55]  J. Musser,et al.  Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination , 1992, Journal of clinical microbiology.

[56]  A. Heath,et al.  Role of horizontal genetic exchange in the antigenic variation of the class 1 outer membrane protein of Neisseria meningitidis , 1992, Molecular microbiology.

[57]  D. Dykhuizen,et al.  Recombination in Escherichia coli and the definition of biological species , 1991, Journal of bacteriology.

[58]  T. Whittam,et al.  Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[59]  John Maynard Smith,et al.  The population genetics of bacteria , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[60]  Christopher G. Dowson,et al.  Localized sex in bacteria , 1991, Nature.

[61]  Stanley T. Rolfe,et al.  A Comparison of the J -lntegral and CTOD Parameters for Short Crack Specimen Testing , 1991 .

[62]  R Milkman,et al.  Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. , 1990, Genetics.

[63]  B. Spratt,et al.  Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[64]  T. Whittam,et al.  Recombination of Salmonella phase 1 flagellin genes generates new serovars , 1990, Journal of bacteriology.

[65]  E. Moxon,et al.  Capsulation in distantly related strains of Haemophilus influenzae type b: genetic drift and gene transfer at the capsulation locus , 1990, Journal of bacteriology.

[66]  CHAPTER 2 – Population Genetics of Bacterial Pathogenesis , 1990 .

[67]  J. Musser,et al.  Population Genetics of Bacterial Pathogenesis , 1990 .

[68]  J. M. Smith,et al.  Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[69]  B. Spratt,et al.  Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Sawyer Statistical tests for detecting gene conversion. , 1989, Molecular biology and evolution.

[71]  J. Wells,et al.  Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[72]  D. Hartl,et al.  Genetic exchange among natural isolates of bacteria: recombination within the phoA gene of Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[73]  J. Musser,et al.  Clonal population structure of encapsulated Haemophilus influenzae , 1988, Infection and immunity.

[74]  D. Caugant,et al.  Clonal diversity of Neisseria meningitidis from a population of asymptomatic carriers , 1988, Infection and immunity.

[75]  D. Caugant,et al.  Genetic structure of Neisseria meningitidis populations in relation to serogroup, serotype, and outer membrane protein pattern , 1987, Journal of bacteriology.

[76]  D. Caugant,et al.  Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[77]  T. Whittam,et al.  Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics , 1986, Applied and environmental microbiology.

[78]  J. Stephens,et al.  Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion. , 1985, Molecular biology and evolution.

[79]  H. Ochman,et al.  Standard reference strains of Escherichia coli from natural populations , 1984, Journal of bacteriology.

[80]  T. Whittam,et al.  Geographic components of linkage disequilibrium in natural populations of Escherichia coli. , 1983, Molecular biology and evolution.

[81]  T. Whittam,et al.  Enzyme polymorphism and genetic population structure in Escherichia coli and Shigella. , 1983, Journal of general microbiology.

[82]  T. Whittam,et al.  Multilocus genetic structure in natural populations of Escherichia coli. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[83]  B. Levin Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. , 1981, Genetics.

[84]  B. Levin,et al.  Genetic diversity and structure in Escherichia coli populations. , 1980, Science.

[85]  M. Nei,et al.  MOLECULAR POPULATION GENETICS AND EVOLUTION , 1976 .

[86]  R. Milkman Electrophoretic Variation in Escherichia coli from Natural Sources , 1973, Science.