Robust finite-time stabilisation of uncertain linear systems

This article deals with the problem of finite-time stability and stabilisation of uncertain linear systems. For linear time-varying systems subject to norm-bounded uncertainties some conditions for finite-time stability are provided. These conditions are expressed in terms of differential linear matrix inequalities. Then the problem of controller design is tackled, both for the state feedback and for the output feedback case; in both cases the controller can be found solving a suitable set of LMIs. A typical engineering case-study is included, to illustrate the applicability of the devised conditions.

[1]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[2]  P. Dorato SHORT-TIME STABILITY IN LINEAR TIME-VARYING SYSTEMS , 1961 .

[3]  L. Weiss,et al.  Finite time stability under perturbing forces and on product spaces , 1967, IEEE Transactions on Automatic Control.

[4]  David Vlack,et al.  Robust Control , 1987 .

[5]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[6]  Rama K. Yedavalli,et al.  Recent Advances in Robust Control , 1990 .

[7]  Tamer Basar,et al.  H∞-Optimal Control and Related , 1991 .

[8]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[9]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[10]  Tamer Başar,et al.  H1-Optimal Control and Related Minimax Design Problems , 1995 .

[11]  C. Scherer Mixed H2/H∞ Control , 1995 .

[12]  Carsten SchererMechanical,et al.  Mixed H 2 =h 1 Control , 1995 .

[13]  F. Amato,et al.  Necessary and sufficient conditions for quadratic stability and stabilizability of uncertain linear time-varying systems , 1996, IEEE Trans. Autom. Control..

[14]  Pascal Gahinet,et al.  Explicit controller formulas for LMI-based H∞ synthesis , 1996, Autom..

[15]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[16]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[17]  Francesco Amato,et al.  Finite-time control of linear systems subject to parametric uncertainties and disturbances , 2001, Autom..

[18]  Hong Chen,et al.  Constrained Control of Active Suspensions: An LMI Approach , 2005 .

[19]  F. Amato,et al.  Finite-time control of linear time-varying systems via output feedback , 2005, Proceedings of the 2005, American Control Conference, 2005..

[20]  Konghui Guo,et al.  Constrained H/sub /spl infin// control of active suspensions: an LMI approach , 2005, IEEE Transactions on Control Systems Technology.

[21]  Francesco Amato,et al.  Robust Control of Linear Systems Subject to Uncertain Time-Varying Parameters , 2006 .

[22]  Carlo Cosentino,et al.  Finite-time stabilization via dynamic output feedback, , 2006, Autom..

[23]  Yanjun Shen Finite-time control of linear parameter-varying systems with norm-bounded exogenous disturbance , 2008 .

[24]  Li Liu,et al.  Finite-time stability of linear time-varying singular systems with impulsive effects , 2008, Int. J. Control.

[25]  Francesco Amato,et al.  Finite-time stability of linear time-varying systems with jumps , 2009, Autom..

[26]  Sophie Tarbouriech,et al.  Finite-Time Stabilization of Linear Time-Varying Continuous Systems , 2009, IEEE Transactions on Automatic Control.

[27]  Gianmaria De Tommasi,et al.  Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems , 2009, IEEE Transactions on Automatic Control.

[28]  Francesco Amato,et al.  Finite-Time Stability of Linear Time-Varying Systems: Analysis and Controller Design , 2010, IEEE Transactions on Automatic Control.