Mechanical design of DNA nanostructures.

Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.

[1]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[2]  Hao Yan,et al.  Lattice-free prediction of three-dimensional structure of programmed DNA assemblies , 2014, Nature Communications.

[3]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[4]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[5]  Björn Högberg,et al.  Spatial control of membrane receptor function using ligand nanocalipers , 2014, Nature Methods.

[6]  Hao Yan,et al.  Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. , 2014, Nature nanotechnology.

[7]  Qiao Jiang,et al.  DNA origami as an in vivo drug delivery vehicle for cancer therapy. , 2014, ACS nano.

[8]  Paramjit S. Arora,et al.  Amyloid fibrils nucleated and organized by DNA origami constructions , 2014, Nature nanotechnology.

[9]  Hao Yan,et al.  DNA-cholesterol barges as programmable membrane-exploring agents. , 2014, ACS nano.

[10]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[11]  H. Su,et al.  DNA origami compliant nanostructures with tunable mechanical properties. , 2014, ACS nano.

[12]  C. Dekker,et al.  Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. , 2014, ACS nano.

[13]  Tao Zhang,et al.  Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. , 2013, Nature nanotechnology.

[14]  Jejoong Yoo,et al.  In situ structure and dynamics of DNA origami determined through molecular dynamics simulations , 2013, Proceedings of the National Academy of Sciences.

[15]  Joseph M. Schaeffer,et al.  On the biophysics and kinetics of toehold-mediated DNA strand displacement , 2013, Nucleic acids research.

[16]  T. Liedl,et al.  Nanoscale structure and microscale stiffness of DNA nanotubes. , 2013, ACS nano.

[17]  R. Eritja,et al.  DNA origami as a DNA repair nanosensor at the single-molecule level. , 2013, Angewandte Chemie.

[18]  Anusuya Banerjee,et al.  Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. , 2013, Angewandte Chemie.

[19]  M. Rief,et al.  Rigid DNA Beams for High-Resolution Single-Molecule Mechanics** , 2013, Angewandte Chemie.

[20]  Erik Winfree,et al.  Integrating DNA strand-displacement circuitry with DNA tile self-assembly , 2013, Nature Communications.

[21]  Chengde Mao,et al.  RNA-DNA hybrid origami: folding of a long RNA single strand into complex nanostructures using short DNA helper strands. , 2013, Chemical communications.

[22]  Hao Yan,et al.  DNA Gridiron Nanostructures Based on Four-Arm Junctions , 2013, Science.

[23]  Philipp C Nickels,et al.  DNA origami nanopillars as standards for three-dimensional superresolution microscopy. , 2013, Nano letters.

[24]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[25]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[26]  Mette D. E. Jepsen,et al.  Construction of a 4 zeptoliters switchable 3D DNA box origami. , 2012, ACS nano.

[27]  Björn Högberg,et al.  DNA origami delivery system for cancer therapy with tunable release properties. , 2012, ACS nano.

[28]  G. Lavella,et al.  A synthetic chemomechanical machine driven by ligand-receptor bonding. , 2012, Nano letters.

[29]  Hao Yan,et al.  DNA origami as a carrier for circumvention of drug resistance. , 2012, Journal of the American Chemical Society.

[30]  Daniel G. Anderson,et al.  Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery , 2012, Nature nanotechnology.

[31]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[32]  Hao Yan,et al.  Reconfigurable DNA origami to generate quasifractal patterns. , 2012, Nano letters.

[33]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[34]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[35]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[36]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[37]  R. Seidel,et al.  Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. , 2011, Nano letters.

[38]  Masayuki Endo,et al.  Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. , 2011, Journal of the American Chemical Society.

[39]  M. Komiyama,et al.  Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy , 2011, Nature communications.

[40]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[41]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[42]  Tim Liedl,et al.  DNA origami-templated growth of arbitrarily shaped metal nanoparticles. , 2011, Small.

[43]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[44]  Enrique Lin Shiao,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[45]  D. Zhang,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[46]  Kersten S. Rabe,et al.  Orthogonal protein decoration of DNA origami. , 2010, Angewandte Chemie.

[47]  Jacob W J Kerssemakers,et al.  Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments , 2010, Nature Methods.

[48]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[49]  Hao Yan,et al.  Folding and cutting DNA into reconfigurable topological nanostructures. , 2010, Nature nanotechnology.

[50]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[51]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[52]  N. Seeman,et al.  DNA scissors device used to measure MutS binding to DNA mis-pairs. , 2010, Journal of the American Chemical Society.

[53]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[54]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[55]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[56]  Tim Liedl,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[57]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[58]  Ruojie Sha,et al.  A Bipedal DNA Brownian Motor with Coordinated Legs , 2009, Science.

[59]  Guohui Zheng,et al.  Structure, dynamics, and branch migration of a DNA Holliday junction: a single-molecule fluorescence and modeling study. , 2008, Biophysical journal.

[60]  Harry M. T. Choi,et al.  Programming DNA Tube Circumferences , 2008, Science.

[61]  C. Mao,et al.  Conformational flexibility facilitates self-assembly of complex DNA nanostructures , 2008, Proceedings of the National Academy of Sciences.

[62]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[63]  L. Mahadevan,et al.  Force of an actin spring. , 2007, Biophysical journal.

[64]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[65]  N. Seeman,et al.  Operation of a DNA Robot Arm Inserted into a 2D DNA Crystalline Substrate , 2006, Science.

[66]  Erwin Frey,et al.  Actin-binding proteins sensitively mediate F-actin bundle stiffness , 2006 .

[67]  D. Baker,et al.  Prediction and design of macromolecular structures and interactions , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[68]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[69]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[70]  Erwin Frey,et al.  Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length , 2005, Proceedings of the National Academy of Sciences.

[71]  E. Winfree,et al.  Design and characterization of programmable DNA nanotubes. , 2004, Journal of the American Chemical Society.

[72]  A. Turberfield,et al.  Self-assembly of chiral DNA nanotubes. , 2004, Journal of the American Chemical Society.

[73]  Polly M Fordyce,et al.  Simultaneous, coincident optical trapping and single-molecule fluorescence , 2004, Nature Methods.

[74]  J. Reif,et al.  A unidirectional DNA walker that moves autonomously along a track. , 2004, Angewandte Chemie.

[75]  C. Mao,et al.  Tensegrity: construction of rigid DNA triangles with flexible four-arm DNA junctions. , 2004, Journal of the American Chemical Society.

[76]  J. Reif,et al.  DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[77]  Yan Liu,et al.  DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires , 2003, Science.

[78]  J. Reif,et al.  A two-state DNA lattice switched by DNA nanoactuator. , 2003, Angewandte Chemie.

[79]  D. Lilley,et al.  Structural dynamics of individual Holliday junctions , 2003, Nature Structural Biology.

[80]  N. Seeman,et al.  A robust DNA mechanical device controlled by hybridization topology , 2002, Nature.

[81]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[82]  S. Smith,et al.  Single-molecule studies of DNA mechanics. , 2000, Current opinion in structural biology.

[83]  N. Seeman,et al.  A nanomechanical device based on the B–Z transition of DNA , 1999, Nature.

[84]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[85]  P. Nielsen,et al.  PNA-nucleic acid complexes. Structure, stability and dynamics , 1996, Quarterly Reviews of Biophysics (print).

[86]  H. Isambert,et al.  Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins , 1995, The Journal of Biological Chemistry.

[87]  Steven M. Block,et al.  Force and velocity measured for single kinesin molecules , 1994, Cell.

[88]  J. Howard,et al.  Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape , 1993, The Journal of cell biology.

[89]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[90]  N C Seeman,et al.  Design of immobile nucleic acid junctions. , 1983, Biophysical journal.

[91]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[92]  W. MacKnight Macromolecules. , 1976, Science.

[93]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[94]  Jing Pan,et al.  A synthetic DNA motor that transports nanoparticles along carbon nanotubes. , 2014, Nature nanotechnology.

[95]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[96]  姜祈傑 「Science」與「Nature」之科學計量分析 , 2008 .

[97]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .