A contour dynamics algorithm for axisymmetric flow
暂无分享,去创建一个
[1] M. A. Jaswon,et al. Integral equation methods in potential theory and elastostatics , 1977 .
[2] A. W. Marris,et al. On the general impossibility of controllable axi-symmetric Navier-Stokes motions , 1977 .
[3] Contour dynamics method for solving the Grad–Shafranov equation with applications to high beta equilibria , 2004 .
[4] R. Pierrehumbert. A family of steady, translating vortex pairs with distributed vorticity , 1980, Journal of Fluid Mechanics.
[5] Paul F. Byrd,et al. Handbook of elliptic integrals for engineers and scientists , 1971 .
[6] R.N.L. Smith. Direct Gauss quadrature formulae for logarithmic singularities on isoparametric elements , 2000 .
[7] David G. Dritschel,et al. The nonlinear evolution of rotating configurations of uniform vorticity , 1986, Journal of Fluid Mechanics.
[8] Joseph Lipka,et al. A Table of Integrals , 2010 .
[9] D. W. Moore,et al. The response of Hill's spherical vortex to a small axisymmetric disturbance , 1978, Journal of Fluid Mechanics.
[10] S. J. Lin,et al. The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices , 1984, Journal of Fluid Mechanics.
[11] V. S. Sadovskii. Vortex regions in a potential stream with a jump of Bernoulli's constant at the boundary , 1971 .
[12] J. A. Tjon,et al. Resonant production of solitons in the RLW equation , 1979 .
[13] J. Norbury,et al. A family of steady vortex rings , 1973, Journal of Fluid Mechanics.
[14] John A. Crow. Quadrature of integrands with a logarithmic singularity , 1993 .
[15] D. Dritschel. Vortex properties of two-dimensional turbulence , 1993 .
[16] Norman J. Zabusky,et al. Contour Dynamics for the Euler Equations in Two Dimensions , 1997 .
[17] D. Bierens de . Haan,et al. Nouvelles tables d'intégrales définies , 1939 .
[18] The dynamics of a columnar vortex in an imposed strain , 1984 .
[19] F. Bark,et al. On vertical boundary layers in a rapidly rotating gas , 1976, Journal of Fluid Mechanics.
[20] Y. Oshima. Head-on Collision of Two Vortex Rings , 1978 .
[21] F. Dyson,et al. The Potential of an Anchor Ring. Part II , 1893 .
[22] F. Hussain,et al. Cross‐linking of two antiparallel vortex tubes , 1989 .
[23] H. Helmholtz. LXIII. On Integrals of the hydrodynamical equations, which express vortex-motion , 1858 .
[24] David G. Dritschel,et al. Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics , 1988 .
[25] G. Batchelor,et al. An Introduction to Fluid Dynamics , 1968 .
[26] S. Crow. Stability theory for a pair of trailing vortices , 1970 .
[27] D. I. Pullin,et al. Contour Dynamics Methods , 1992 .
[28] S. Lichter,et al. Entrainment and detrainment from a model boundary layer , 2003, Journal of Fluid Mechanics.
[29] D. Dritschel. The stability and energetics of corotating uniform vortices , 1985, Journal of Fluid Mechanics.
[30] W. Cody. Chebyshev Approximations for the Complete Elliptic Integrals K and E , 1965 .
[31] Paul Russell Schatzle,et al. An Experimental Study of Fusion of Vortex Rings , 1987 .
[32] C. Pozrikidis,et al. The nonlinear instability of Hill's vortex , 1986, Journal of Fluid Mechanics.
[33] G. Corcos,et al. The mixing layer: deterministic models of a turbulent flow. Part 2. The origin of the three-dimensional motion , 1984, Journal of Fluid Mechanics.
[34] P. Jacobs,et al. Inviscid evolution of stretched vortex arrays , 1986, Journal of Fluid Mechanics.