A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 /spl mu/m
暂无分享,去创建一个
Ping Yang | Bo-Cai Gao | Kerry Meyer | B. Gao | P. Yang | K. Meyer
[1] Bryan A. Baum,et al. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models , 2000 .
[2] W. Paul Menzel,et al. Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..
[3] K. Liou. Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .
[4] Wallace M. Porter,et al. The airborne visible/infrared imaging spectrometer (AVIRIS) , 1993 .
[5] M. King,et al. Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .
[6] K. Stamnes,et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.
[7] Ping Yang,et al. Optical thickness of tropical cirrus clouds derived from the MODIS 0.66and 1.375-/spl mu/m channels , 2004, IEEE Transactions on Geoscience and Remote Sensing.
[8] D. Roberts,et al. Estimation of aerosol optical depth and additional atmospheric parameters for the calculation of apparent reflectance from radiance measured by the Airborne Visible/Infrared Imaging Spectrometer , 1993 .
[9] Michael D. King,et al. A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surfaces , 2001 .
[10] A. Goetz,et al. Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .
[11] Y. Kaufman,et al. Corection of thin cirrus path radiances in the 0.4–1.0 μm spectral region using the sensitive 1.375 μm cirrus detecting channel , 1998 .
[12] Jessica A. Faust,et al. Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .
[13] Laurence S. Rothman,et al. The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) , 1998, Defense, Security, and Sensing.
[14] Y. Kaufman,et al. Selection of the 1.375-µm MODIS Channel for Remote Sensing of Cirrus Clouds and Stratospheric Aerosols from Space , 1995 .
[15] Scott Glenn,et al. LEO-15: monitoring and managing coastal resources , 1997 .
[16] Wei Chen,et al. Ocean PHILLS hyperspectral imager: design, characterization, and calibration. , 2002, Optics express.
[17] Ping Yang,et al. An algorithm using visible and 1.38-μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data , 2002, IEEE Trans. Geosci. Remote. Sens..
[18] V. Salomonson,et al. MODIS: advanced facility instrument for studies of the Earth as a system , 1989 .
[19] W. Paul Menzel,et al. The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..
[20] Laurence S. Rothman,et al. Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .
[21] L. Kou,et al. Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range. , 1993, Applied optics.
[22] K. Liou,et al. Parameterization of the scattering and absorption properties of individual ice crystals , 2000 .