Exploring the Relevance of Search Engines: An Overview of Google as a Case Study

The huge amount of data on the Internet and the diverse list of strategies used to try to link this information with relevant searches through Linked Data have generated a revolution in data treatment and its representation. Nevertheless, the conventional search engines like Google are kept as strategies with good reception to do search processes. The following article presents a study of the development and evolution of search engines, more specifically, to analyze the relevance of findings based on the number of results displayed in paging systems with Google as a case study. Finally, it is intended to contribute to indexing criteria in search results, based on an approach to Semantic Web as a stage in the evolution of the Web.

[1]  Klaus F. Zimmermann,et al.  The Internet as a Data Source for Advancement in Social Sciences , 2015, SSRN Electronic Journal.

[2]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[3]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[4]  Ailín Martínez Rodríguez Cybermetric indicators: new proposals to measure information in the digital environment , 2006 .

[5]  P. Kumar,et al.  SEReleC (Search Engine Result Refinement and Classification) - a Meta search engine based on combinatorial search and search keyword based link classification , 2012, IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012).

[6]  Fatemeh Ahmadi-Abkenari,et al.  An architecture for a focused trend parallel Web crawler with the application of clickstream analysis , 2012, Inf. Sci..

[7]  Sebastiano Vigna,et al.  UbiCrawler: a scalable fully distributed Web crawler , 2004, Softw. Pract. Exp..

[8]  L. Liu,et al.  Post-processing of Deep Web Information Extraction Based on Domain Ontology , 2013 .

[9]  Taher H. Haveliwala Efficient Computation of PageRank , 1999 .

[10]  John W. Fritch,et al.  Heuristics, tools, and systems for evaluating Internet information: helping users assess a tangled Web , 2003, Online Inf. Rev..

[11]  Salvador Sánchez-Alonso,et al.  Visualization of information: a proposal to improve the search and access to digital resources in repositories , 2014 .

[12]  Sergey Brin,et al.  Reprint of: The anatomy of a large-scale hypertextual web search engine , 2012, Comput. Networks.

[13]  Salvador Sánchez-Alonso,et al.  An Exploratory Study of User Perception in Visual Search Interfaces Based on SKOS , 2016 .

[14]  Nick Cramer,et al.  WebTheme™: Understanding Web Information through Visual Analytics , 2002, International Semantic Web Conference.

[15]  Miguel Ángel Marzal,et al.  Development of a controlled vocabulary for learning objects' functional description in an educational repository , 2006, Dublin Core Conference.

[16]  Salvador Sánchez Alonso,et al.  A usability study of taxonomy visualisation user interfaces in digital repositories , 2014, Online Inf. Rev..

[17]  A. K. Sharma,et al.  An Improved Approach to Ranking Web Documents , 2013, J. Inf. Process. Syst..

[18]  Niraj Singhal,et al.  Regulating Frequency of a Migrating Web Crawler based on Users Interest , 2012 .

[19]  Jie Zhao,et al.  Web Information Credibility: From Web 1.0 to Web 2.0 , 2015 .

[20]  V. S. Dhaka,et al.  Web Crawler: A Review , 2013 .

[21]  S. Margret Anouncia,et al.  Semantic Search Engine , 2013, Int. J. Recent Contributions Eng. Sci. IT.

[22]  Taher H. Haveliwala Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search , 2003, IEEE Trans. Knowl. Data Eng..

[23]  Barbaraella Frazier Niche Search Engines: Expanding Information Discovery , 2013 .

[24]  Torsten Suel,et al.  Design and implementation of a high-performance distributed Web crawler , 2002, Proceedings 18th International Conference on Data Engineering.

[25]  Duygu Tümer,et al.  An Empirical Evaluation on Semantic Search Performance of Keyword-Based and Semantic Search Engines: Google, Yahoo, Msn and Hakia , 2009, 2009 Fourth International Conference on Internet Monitoring and Protection.

[26]  Daniel A. Keim,et al.  Solving Problems with Visual Analytics , 2011, FET.

[27]  Joseph Edosomwan,et al.  Comparative analysis of some search engines , 2010 .

[28]  Andreas Hotho,et al.  Semantic Web Mining: State of the art and future directions , 2006, J. Web Semant..

[29]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[30]  Martin C. Maguire,et al.  Methods to support human-centred design , 2001, Int. J. Hum. Comput. Stud..

[31]  David Lazer,et al.  Location, Location, Location: The Impact of Geolocation on Web Search Personalization , 2015, Internet Measurement Conference.

[32]  Martha Mendoza,et al.  A harmony search algorithm for clustering with feature selection , 2010 .

[33]  Francisco J. Serón,et al.  VOX system: a semantic embodied conversational agent exploiting linked data , 2014, Multimedia Tools and Applications.

[34]  Marco Suárez Barón,et al.  An approach to semantic indexing and information retrieval Una aproximación a la indexación semántica y a la recuperación de información , 2009 .

[35]  Gennady L. Andrienko,et al.  Visual analytics of movement: An overview of methods, tools and procedures , 2013, Inf. Vis..

[36]  Yong Chen,et al.  Bayes topic prediction model for focused crawling of vertical search engine , 2014, 2014 IEEE Computers, Communications and IT Applications Conference.

[37]  K. S. Kim,et al.  Design and implementation of web crawler based on dynamic web collection cycle , 2012, The International Conference on Information Network 2012.

[38]  Marios D. Dikaiakos,et al.  An investigation of web crawler behavior: characterization and metrics , 2005, Comput. Commun..