Multidisciplinary approach for surveillance and risk identification of yellow fever and other arboviruses in Colombia

[1]  G. Parra-Henao,et al.  House-Level Risk Factors for Aedes aegypti Infestation in the Urban Center of Castilla la Nueva, Meta State, Colombia , 2021, Journal of tropical medicine.

[2]  M. Kulkarni,et al.  Determinants of Aedes mosquito density as an indicator of arbovirus transmission risk in three sites affected by co-circulation of globally spreading arboviruses in Colombia, Ecuador and Argentina , 2021, Parasites & Vectors.

[3]  M. Kulkarni,et al.  Entomological characterization of Aedes mosquitoes and arbovirus detection in Ibagué, a Colombian city with co-circulation of Zika, dengue and chikungunya viruses , 2021, Parasites & vectors.

[4]  Manuel Francisco Polanco Puerta,et al.  Análisis de la deforestación en La Macarena, antes y después de los acuerdos de paz , 2021, Colombia forestal.

[5]  H. Toma,et al.  Natural Infection and Vertical Transmission of Zika Virus in Sylvatic Mosquitoes Aedes albopictus and Haemagogus leucocelaenus from Rio de Janeiro, Brazil , 2021, Tropical medicine and infectious disease.

[6]  R. Tesh,et al.  The Usefulness of a Duplex RT-qPCR during the Recent Yellow Fever Brazilian Epidemic: Surveillance of Vaccine Adverse Events, Epizootics and Vectors , 2021, Pathogens.

[7]  J. Alencar,et al.  Oviposition behavior of wild yellow fever vector mosquitoes (Diptera: Culicidae) in an Atlantic Forest fragment, Rio de Janeiro state, Brazil , 2021, Scientific Reports.

[8]  J. A. Quintanilha,et al.  Predicting Aedes aegypti infestation using landscape and thermal features , 2020, Scientific Reports.

[9]  S. Witkin,et al.  Possible non-sylvatic transmission of yellow fever between non-human primates in São Paulo city, Brazil, 2017–2018 , 2020, Scientific Reports.

[10]  C. Codeço,et al.  Diversity of mosquito (Diptera: Culicidae) vectors in a heterogeneous landscape endemic for arboviruses. , 2020, Acta tropica.

[11]  A. Brault,et al.  Global Perspectives on Arbovirus Outbreaks: A 2020 Snapshot , 2020, Tropical medicine and infectious disease.

[12]  B. de Thoisy,et al.  Recent sylvatic yellow fever virus transmission in Brazil: the news from an old disease , 2020, Virology Journal.

[13]  Brendan Nyhan,et al.  The effects of corrective information about disease epidemics and outbreaks: Evidence from Zika and yellow fever in Brazil , 2020, Science Advances.

[14]  Integrated Management Strategy for Arboviral Disease Prevention and Control in the Americas , 2020 .

[15]  M. Evander,et al.  Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics , 2020, Vector borne and zoonotic diseases.

[16]  M. G. Castro,et al.  Low vector competence in sylvatic mosquitoes limits Zika virus to initiate an enzootic cycle in South America , 2019, Scientific Reports.

[17]  J. Castellanos,et al.  Prevalence of dengue antibodies in healthy children and adults in different Colombian endemic areas. , 2019, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[18]  M. Sá Carvalho,et al.  Entomo-virological surveillance strategy for dengue, Zika and chikungunya arboviruses in field-caught Aedes mosquitoes in an endemic urban area of the Northeast of Brazil. , 2019, Acta tropica.

[19]  M. N. Rocha,et al.  Detection of Yellow Fever Virus in Sylvatic Mosquitoes during Disease Outbreaks of 2017–2018 in Minas Gerais State, Brazil , 2019, Insects.

[20]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[21]  Nicholas H. Ogden,et al.  Environmental and social determinants of population vulnerability to Zika virus emergence at the local scale , 2018, Parasites & Vectors.

[22]  R. Sang,et al.  Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities , 2017, Parasites & Vectors.

[23]  T. Fuller,et al.  Behavioral, climatic, and environmental risk factors for Zika and Chikungunya virus infections in Rio de Janeiro, Brazil, 2015-16 , 2017, PloS one.

[24]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[25]  G. Palacios,et al.  First report of naturally infected Aedes aegypti with chikungunya virus genotype ECSA in the Americas , 2017, PLoS neglected tropical diseases.

[26]  Guillermo L. Rúa-Uribe,et al.  Vigilancia virológica de Aedes (Stegomyia) aegypti y Aedes (Stegomyia) albopictus como apoyo para la adopción de decisiones en el control del dengue en Medellín , 2017 .

[27]  A. Rodríguez-Morales,et al.  Yellow fever in the Americas: the growing concern about new epidemics. , 2017, F1000Research.

[28]  M. Moglia,et al.  Exploring methods to minimize the risk of mosquitoes in rainwater harvesting systems , 2016 .

[29]  I. Sandoval,et al.  Easy and inexpensive molecular detection of dengue, chikungunya and zika viruses in febrile patients. , 2016, Acta tropica.

[30]  A. Mejía-Jaramillo,et al.  Infection Rates by Dengue Virus in Mosquitoes and the Influence of Temperature May Be Related to Different Endemicity Patterns in Three Colombian Cities , 2016, International journal of environmental research and public health.

[31]  V. Olano Aedes aegypti in rural areas: public health implications. , 2016, Biomedica : revista del Instituto Nacional de Salud.

[32]  V. Deubel,et al.  Complete nucleotide sequence and phylogeny of an American strain of yellow fever virus, TRINID79A , 1999, Archives of Virology.

[33]  A. C. Cruz,et al.  Yellow Fever Virus in Haemagogus leucocelaenus and Aedes serratus Mosquitoes, Southern Brazil, 2008 , 2010, Emerging infectious diseases.

[34]  J. Navarro,et al.  Clave fotográfica para hembras de Haemagogus Williston 1896 (Diptera: Culicidae) de Venezuela, con nuevo registro para el país , 2009 .

[35]  U. Kitron,et al.  A New, Cost-Effective, Battery-Powered Aspirator for Adult Mosquito Collections , 2009, Journal of medical entomology.

[36]  G. Carrasquilla,et al.  An ecosystemic approach to evaluating ecological, socioeconomic and group dynamics affecting the prevalence of Aedes aegypti in two Colombian towns. , 2009, Cadernos de saude publica.

[37]  J. R. Rey,et al.  Fiebre Amarilla , 2007, EDIS.

[38]  A. Rodríguez-Morales,et al.  Epizootics of Yellow Fever in Venezuela (2004–2005) , 2006, Annals of the New York Academy of Sciences.

[39]  M. Guzmán,et al.  Aedes aegypti Larval Indices and Risk for Dengue Epidemics , 2006, Emerging infectious diseases.

[40]  A. Lenhart,et al.  Use of the pupal/demographic-survey technique to identify the epidemiologically important types of containers producing Aedes aegypti (L.) in a dengue-endemic area of Venezuela , 2006, Annals of tropical medicine and parasitology.

[41]  G. Mead,et al.  Is cost effective , 1995, BMJ.

[42]  S. Rodrigues,et al.  New entomological and virological data on the vectors of sylvatic yellow fever in Brazil , 1992 .