An objective perspective for classic flow classification criteria

[1]  S. Childress CONSTRUCTION OF STEADY-STATE HYDROMAGNETIC DYNAMOS. II. THE SPHERICAL CONDUCTOR, , 1967 .

[2]  CONSTRUCTION OF STEADY-STATE HYDROMAGNETIC DYNAMOS. I. SPATIALLY PERIODIC FIELDS, , 1967 .

[3]  Gianni Astarita,et al.  Objective and generally applicable criteria for flow classification , 1979 .

[4]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[5]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[6]  A. Lifschitz Essential spectrum and local stability condition in hydrodynamics , 1991 .

[7]  S. Friedlander,et al.  Instability criteria for the flow of an inviscid incompressible fluid. , 1991, Physical review letters.

[8]  Michael Tabor,et al.  The kinematics of stretching and alignment of material elements in general flow fields , 1992, Journal of Fluid Mechanics.

[9]  M. Tabor,et al.  Stretching and alignment in chaotic and turbulent flows , 1994 .

[10]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[11]  S. Balachandar,et al.  Mechanisms for generating coherent packets of hairpin vortices in channel flow , 1999, Journal of Fluid Mechanics.

[12]  R. Thompson,et al.  A general transformation procedure for differential viscoelastic models , 2003 .

[13]  G. Haller An objective definition of a vortex , 2004, Journal of Fluid Mechanics.

[14]  R. Adrian,et al.  On the relationships between local vortex identification schemes , 2005, Journal of Fluid Mechanics.

[15]  Application of vortex identification schemes to direct numerical simulation data of a transitional boundary layer , 2013 .