Data-driven inverse optimization with imperfect information

In data-driven inverse optimization an observer aims to learn the preferences of an agent who solves a parametric optimization problem depending on an exogenous signal. Thus, the observer seeks the agent’s objective function that best explains a historical sequence of signals and corresponding optimal actions. We focus here on situations where the observer has imperfect information, that is, where the agent’s true objective function is not contained in the search space of candidate objectives, where the agent suffers from bounded rationality or implementation errors, or where the observed signal-response pairs are corrupted by measurement noise. We formalize this inverse optimization problem as a distributionally robust program minimizing the worst-case risk that the predicted decision (i.e., the decision implied by a particular candidate objective) differs from the agent’s actual response to a random signal. We show that our framework offers rigorous out-of-sample guarantees for different loss functions used to measure prediction errors and that the emerging inverse optimization problems can be exactly reformulated as (or safely approximated by) tractable convex programs when a new suboptimality loss function is used. We show through extensive numerical tests that the proposed distributionally robust approach to inverse optimization attains often better out-of-sample performance than the state-of-the-art approaches.

[1]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .

[2]  Timothy C. Y. Chan,et al.  Generalized Inverse Multiobjective Optimization with Application to Cancer Therapy , 2014, Oper. Res..

[3]  Lizhi Wang,et al.  Cutting plane algorithms for the inverse mixed integer linear programming problem , 2009, Oper. Res. Lett..

[4]  András Faragó,et al.  Inverse Optimization in High-speed Networks , 2003, Discret. Appl. Math..

[5]  Dorit S. Hochbaum,et al.  Efficient Algorithms for the Inverse Spanning-Tree Problem , 2003, Oper. Res..

[6]  Edward E. Leamer,et al.  Econometric Tools for Analyzing Market Outcomes , 2007 .

[7]  G. Pflug,et al.  Ambiguity in portfolio selection , 2007 .

[8]  Garud Iyengar,et al.  Inverse conic programming with applications , 2005, Oper. Res. Lett..

[9]  Anna Nagurney,et al.  On a Paradox of Traffic Planning , 2005, Transp. Sci..

[10]  Sébastien Bubeck,et al.  Convex Optimization: Algorithms and Complexity , 2014, Found. Trends Mach. Learn..

[11]  Daniel Kuhn,et al.  Regularization via Mass Transportation , 2017, J. Mach. Learn. Res..

[12]  M. Sion On general minimax theorems , 1958 .

[13]  Mark L Latash,et al.  An analytical approach to the problem of inverse optimization with additive objective functions: an application to human prehension , 2010, Journal of mathematical biology.

[14]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[15]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[16]  Chengxian Xu,et al.  Inverse optimization for linearly constrained convex separable programming problems , 2010, Eur. J. Oper. Res..

[17]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[18]  Vishal Gupta,et al.  Inverse Optimization: A New Perspective on the Black-Litterman Model , 2012, Oper. Res..

[19]  Philippe L. Toint,et al.  On an instance of the inverse shortest paths problem , 1992, Math. Program..

[20]  Andrew J. Schaefer,et al.  Inverse integer programming , 2009, Optim. Lett..

[21]  Daniel Kuhn,et al.  Distributionally Robust Logistic Regression , 2015, NIPS.

[22]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[23]  Jonas Schmitt Portfolio Selection Efficient Diversification Of Investments , 2016 .

[24]  Yongpei Guan,et al.  The inverse optimal value problem , 2005, Math. Program..

[25]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[26]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[27]  Juan M. Morales,et al.  A Data-Driven Bidding Model for a Cluster of Price-Responsive Consumers of Electricity , 2015, IEEE Transactions on Power Systems.

[28]  Ravindra K. Ahuja,et al.  A Faster Algorithm for the Inverse Spanning Tree Problem , 2000, J. Algorithms.

[29]  Jörn Behrens,et al.  Inversion of seismic data using tomographical reconstruction techniques for investigations of laterally inhomogeneous media , 1984 .

[30]  Scott M. Carr,et al.  The Inverse Newsvendor Problem: Choosing an Optimal Demand Portfolio for Capacitated Resources , 2000 .

[31]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[32]  Vishal Gupta,et al.  Data-driven estimation in equilibrium using inverse optimization , 2013, Mathematical Programming.

[33]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[34]  C. L. Benkard,et al.  Estimating Dynamic Models of Imperfect Competition , 2004 .

[35]  A. Guillin,et al.  On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.

[36]  Charles E. Blair,et al.  Computational Difficulties of Bilevel Linear Programming , 1990, Oper. Res..

[37]  Emmanuel Boissard Simple Bounds for the Convergence of Empirical and Occupation Measures in 1-Wasserstein Distance , 2011, 1103.3188.

[38]  Daniel Kuhn,et al.  Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.

[39]  Ravindra K. Ahuja,et al.  Inverse Optimization , 2001, Oper. Res..

[40]  Steven T. Berry,et al.  Chapter 63 Econometric Tools for Analyzing Market Outcomes , 2007 .

[41]  Stephen P. Boyd,et al.  Imputing a convex objective function , 2011, 2011 IEEE International Symposium on Intelligent Control.

[42]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[43]  Marvin D. Troutt,et al.  Behavioral Estimation of Mathematical Programming Objective Function Coefficients , 2006, Manag. Sci..

[44]  Zuo-Jun Max Shen,et al.  Inverse Optimization with Noisy Data , 2015, Oper. Res..

[45]  C. Bottasso,et al.  A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system , 2006 .

[46]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[47]  Clemens Heuberger,et al.  Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results , 2004, J. Comb. Optim..