Error Whitening Wiener Filters: Theory and Algorithms

[1]  P. Hall Limit theorems for sums of general functions of m-spacings , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  S. Huffel,et al.  STRUCTURED TOTAL LEAST SQUARES Analysis, Algorithms and Applications , 2002 .

[3]  Uday B. Desai,et al.  A robust recursive least squares algorithm , 1997, IEEE Trans. Signal Process..

[4]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[5]  M. S. Mueller,et al.  Least-squares algorithms for adaptive equalizers , 1981, The Bell System Technical Journal.

[6]  Deniz Erdogmus,et al.  AN ON-LINE ADAPTATION ALGORITHM FOR ADAPTIVE SYSTEM TRAINING WITH MINIMUM ERROR ENTROPY: STOCHASTIC INFORMATION GRADIENT , 2001 .

[7]  Deniz Erdogmus,et al.  Generalized information potential criterion for adaptive system training , 2002, IEEE Trans. Neural Networks.

[8]  Tamer Basar,et al.  Analysis of Recursive Stochastic Algorithms , 2001 .

[9]  Zheng Bao,et al.  Total least mean squares algorithm , 1998, IEEE Trans. Signal Process..

[10]  B. Farhang-Boroujeny,et al.  Adaptive Filters: Theory and Applications , 1999 .

[11]  V. Kvasnicka,et al.  Neural and Adaptive Systems: Fundamentals Through Simulations , 2001, IEEE Trans. Neural Networks.

[12]  P. Regalia Adaptive IIR Filtering in Signal Processing and Control , 1994 .

[13]  Deniz Erdogmus,et al.  Error whitening criterion for adaptive filtering: theory and algorithms , 2005, IEEE Transactions on Signal Processing.

[14]  Deniz Erdoğmuş INFORMATION THEORETIC LEARNING: RENYI'S ENTROPY AND ITS APPLICATIONS TO ADAPTIVE SYSTEM TRAINING , 2002 .

[15]  Arie Yeredor,et al.  The extended least squares criterion: minimization algorithms and applications , 2001, IEEE Trans. Signal Process..

[16]  Bart De Moor,et al.  Total least squares for affinely structured matrices and the noisy realization problem , 1994, IEEE Trans. Signal Process..

[17]  James A. Cadzow Total Least Squares, Matrix Enhancement, and Signal Processing , 1994 .

[18]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[19]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[20]  Harold J. Kushner,et al.  wchastic. approximation methods for constrained and unconstrained systems , 1978 .

[21]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[22]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[23]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[24]  Scott C. Douglas,et al.  Exact expectation analysis of the LMS adaptive filter , 1995, IEEE Trans. Signal Process..

[25]  James R. Zeidler,et al.  Non-linear effects in LMS adaptive filters , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[26]  Jan Beirlant,et al.  The empirical distribution function and strong laws for functions of order statistics of uniform spacings , 1985 .

[27]  Paul A. Viola,et al.  Empirical Entropy Manipulation for Real-World Problems , 1995, NIPS.

[28]  A. Tsybakov,et al.  Root-N consistent estimators of entropy for densities with unbounded support , 1994, Proceedings of 1994 Workshop on Information Theory and Statistics.

[29]  Deniz Erdogmus,et al.  Do Hebbian synapses estimate entropy? , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[30]  S. Douglas Analysis of an anti-Hebbian adaptive FIR filtering algorithm , 1996 .

[31]  Pierre Priouret,et al.  Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.

[32]  H. C. So,et al.  Modified LMS algorithm for unbiased impulse response estimation in nonstationary noise , 1999 .

[33]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[34]  José Carlos Príncipe,et al.  Efficient total least squares method for system modeling using minor component analysis , 2002, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing.

[35]  H. Akaike A new look at the statistical model identification , 1974 .

[36]  M. Swamy,et al.  A constrained anti-Hebbian learning algorithm for total least-squares estimation with applications to adaptive FIR and IIR filtering , 1994 .

[37]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[38]  P. Bickel,et al.  Sums of Functions of Nearest Neighbor Distances, Moment Bounds, Limit Theorems and a Goodness of Fit Test , 1983 .

[39]  F. P. Tarasenko On the evaluation of an unknown probability density function, the direct estimation of the entropy from independent observations of a continuous random variable, and the distribution-free entropy test of goodness-of-fit , 1968 .

[40]  Gene H. Golub,et al.  Matrix computations , 1983 .