Identification of a novel NAMPT inhibitor by CRISPR/Cas9 chemogenomic profiling in mammalian cells

[1]  Maristela L Onozato,et al.  Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma , 2016, Clinical Cancer Research.

[2]  Max A. Horlbeck,et al.  Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification , 2016, Nature chemical biology.

[3]  D. Hoepfner,et al.  Natural products as probes in pharmaceutical research , 2016, Journal of Industrial Microbiology & Biotechnology.

[4]  D. Durocher,et al.  High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities , 2015, Cell.

[5]  C. Dang,et al.  MYC and metabolism on the path to cancer. , 2015, Seminars in cell & developmental biology.

[6]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[7]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[8]  D. Sampath,et al.  Structural Basis for Resistance to Diverse Classes of NAMPT Inhibitors , 2014, PloS one.

[9]  Gary D. Bader,et al.  Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures , 2014, Science.

[10]  C. Roberts,et al.  Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers , 2014, Proceedings of the National Academy of Sciences.

[11]  John A. Tallarico,et al.  High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. , 2014, Microbiological research.

[12]  Wei Zhang,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.

[13]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[14]  Michael T. McManus,et al.  Next-generation NAMPT inhibitors identified by sequential high-throughput phenotypic chemical and functional genomic screens. , 2013, Chemistry & biology.

[15]  Chi V Dang,et al.  MYC on the Path to Cancer , 2012, Cell.

[16]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[17]  A. Menssen,et al.  The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop , 2011, Proceedings of the National Academy of Sciences.

[18]  T. Nakazawa,et al.  Structure and reaction mechanism of human nicotinamide phosphoribosyltransferase. , 2010, Journal of biochemistry.

[19]  R. Brodsky How I treat paroxysmal nocturnal hemoglobinuria. , 2009, Blood.

[20]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[21]  P. Greaney,et al.  The NAD biosynthesis inhibitor APO866 has potent antitumor activity against hematologic malignancies. , 2009, Blood.

[22]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[23]  R. König,et al.  A probability-based approach for the analysis of large-scale RNAi screens , 2007, Nature Methods.

[24]  J. Khan,et al.  Molecular basis for the inhibition of human NMPRTase, a novel target for anticancer agents , 2006, Nature Structural &Molecular Biology.

[25]  Elizabeth A. Winzeler,et al.  Genomic profiling of drug sensitivities via induced haploinsufficiency , 1999, Nature Genetics.

[26]  M. Brattain,et al.  Heterogeneity of malignant cells from a human colonic carcinoma. , 1981, Cancer research.