Application of a New Rheological Model to Rock Avalanches: An SPH Approach

AbstractRock avalanches move large volumes of material causing a highly destructive power over large areas. In these events, it is possible to monitor the evolution of slopes but failure cannot be always prevented. For this reason, modelling of the propagation phase provides engineers with fundamental information regarding speed, track, runout and depth. From these data, it is possible to perform a better risk assessment and propose mitigation measures to reduce the potential hazard of specific area. The purpose of this paper is to present a depth integrated, SPH model, which can be used to simulate real rock avalanches and to assess the influence of the rheology on the avalanche properties. The paper compares the performance of different rheological models to reproduce the track, runout and depth of the final deposit for both, scale test and real events such as Frank and Thurwiesier rock avalanches. These sets of benchmarks provide information on the proposed model accuracy and limitations.

[1]  Jean-Paul Vila,et al.  ON PARTICLE WEIGHTED METHODS AND SMOOTH PARTICLE HYDRODYNAMICS , 1999 .

[2]  Sivakumar Kulasegaram,et al.  Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .

[3]  P. Heinrich,et al.  Analytical Solution for Testing Debris Avalanche Numerical Models , 2000 .

[4]  K. Hutter,et al.  Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[5]  P. Coussot Rheometry of Pastes, Suspensions, and Granular Materials: Applications in Industry and Environment , 2005 .

[6]  Javier Bonet,et al.  A corrected smooth particle hydrodynamics formulation of the shallow-water equations , 2005 .

[7]  Eduardo Alonso,et al.  Criteria for rapid sliding II.: Thermo-hydro-mechanical and scale effects in Vaiont case , 2010 .

[8]  M. Quecedo,et al.  Numerical modelling of the propagation of fast landslides using the finite element method , 2004 .

[9]  Irene Manzella Dry rock avalanche propagation , 2008 .

[10]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[11]  Frédéric Dufour,et al.  Large deformation FEMLIP drained analysis of a vertical cut , 2012 .

[12]  Manuel Pastor,et al.  A stabilized Smoothed Particle Hydrodynamics, Taylor–Galerkin algorithm for soil dynamics problems , 2013 .

[13]  Cheng-lung Chen,et al.  Generalized Viscoplastic Modeling of Debris Flow , 1988 .

[14]  M. Quecedo,et al.  Simple Approximation to Bottom Friction for Bingham Fluid Depth Integrated Models , 2004 .

[15]  Manuel Pastor,et al.  A stabilized Runge–Kutta, Taylor smoothed particle hydrodynamics algorithm for large deformation problems in dynamics , 2012 .

[16]  J. Monaghan,et al.  A refined particle method for astrophysical problems , 1985 .

[17]  M. Pastor,et al.  A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: Application to fast catastrophic landslides , 2009 .

[18]  Oldrich Hungr,et al.  A model for the runout analysis of rapid flow slides, debris flows, and avalanches , 1995 .

[19]  M. Pirulli The Thurwieser rock avalanche (Italian Alps): description and dynamic analysis , 2009 .

[20]  Ioannis Vardoulakis,et al.  Thermoporomechanics of creeping landslides: The 1963 Vaiont slide, northern Italy , 2007 .

[21]  A. Patra,et al.  Computing granular avalanches and landslides , 2003 .

[22]  M. Quecedo,et al.  Modelling tailings dams and mine waste dumps failures , 2002 .

[23]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics: A Meshfree Particle Method , 2003 .

[24]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[25]  J. Monaghan Particle methods for hydrodynamics , 1985 .

[26]  M. Pastor,et al.  From solids to fluidized soils: diffuse failure mechanisms in geostructures with applications to fast catastrophic landslides , 2010 .

[27]  J. Monaghan Why Particle Methods Work , 1982 .

[28]  B. Rogers,et al.  SPH Modeling of Shallow Flow with Open Boundaries for Practical Flood Simulation , 2012 .

[29]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[30]  J. Monaghan,et al.  Solitary Waves on a Cretan Beach , 1999 .

[31]  Nader A. Issa,et al.  Fluid motion generated by impact , 2003 .

[32]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[33]  Raushania Gaifullina,et al.  The Use of Histochrome in the Complex Treatment of the Patients with Acute Coronary Syndrome with ST Segment Depression Diagnosed on ECG , 2014 .

[34]  Azzeddine Soulaïmani,et al.  A stabilized SPH method for inviscid shallow water flows , 2005 .

[35]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[36]  C. Prisco,et al.  An exercise on slope stability and perfect elastoplasticity , 2011 .

[37]  Oldrich Hungr,et al.  The debris of the Frank Slide and theories of rockslide–avalanche mobility , 1986 .

[38]  Kolumban Hutter,et al.  Avalanche dynamics: Dynamics of rapid flows of dense granular avalanches , 2016 .

[39]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[40]  Kolumban Hutter,et al.  The Savage–Hutter avalanche model: how far can it be pushed? , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  R. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  W. Benz Smooth Particle Hydrodynamics: A Review , 1990 .

[43]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[44]  M. Pastor,et al.  A depth‐integrated, coupled SPH model for flow‐like landslides and related phenomena , 2009 .

[45]  Federico Pisanò,et al.  Shear wave propagation along infinite slopes: A theoretically based numerical study , 2012 .

[46]  A. Heim Bergsturz und Menschenleben , 1932 .

[47]  Hermann M. Fritz,et al.  Lituya Bay Case Rockslide Impact and Wave Run-up , 2001 .

[48]  Long Le,et al.  A two-fluid model for avalanche and debris flows , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[49]  Philippe Coussot,et al.  Numerical modeling of mudflows , 1997 .

[50]  Piotr Perzyna,et al.  The constitutive equations for rate sensitive plastic materials , 1963 .

[51]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis , 1991 .

[52]  Jean-Pierre Vilotte,et al.  Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme , 2003 .

[53]  O. C. Zienkiewicz,et al.  The solution of non‐linear hyperbolic equation systems by the finite element method , 1984 .

[54]  Qiuhua Liang,et al.  Balancing the source terms in a SPH model for solving the shallow water equations , 2013 .

[55]  M. Pastor,et al.  A Taylor-Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua , 2003 .

[56]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[57]  Kolumban Hutter,et al.  Gravity-driven free surface flow of granular avalanches over complex basal topography , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[58]  J. Monaghan,et al.  Kernel estimates as a basis for general particle methods in hydrodynamics , 1982 .

[59]  Huafeng Liu,et al.  Meshfree particle method , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[60]  S. Giuliani,et al.  Time-accurate solution of advection-diffusion problems by finite elements , 1984 .

[61]  S. B. Savage,et al.  Two-dimensional spreading of a granular avalanche down an inclined plane Part I. theory , 1993 .

[62]  M. Pastor,et al.  A viscoplastic approach to the behaviour of fluidized geomaterials with application to fast landslides , 2015 .

[63]  E. Alonso,et al.  Thermo-Hydro-Mechanics of a Rapid Slide: Vaiont Landslide, Italy , 2010 .

[64]  Manuel Pastor,et al.  Depth Averaged Models for Fast Landslide Propagation: Mathematical, Rheological and Numerical Aspects , 2015 .

[65]  O. Hungr,et al.  A model for the analysis of rapid landslide motion across three-dimensional terrain , 2004 .

[66]  H. Jay Melosh,et al.  Acoustic fluidization: A new geologic process? , 1979 .

[67]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[68]  S. U. Romero,et al.  Kinematic aspects of the Vaiont slide : Congress. Preprint. 6F. THIRD INTERNAT. CONGRESS ON ROCK MECHANICS, THEME 3, SURFACE WORKINGS, DENVER, SEPT. 1974, 6P , 1974 .

[69]  M. Pastor,et al.  1D wave propagation in saturated viscous geomaterials: Improvement and validation of a fractional step Taylor–Galerkin finite element algorithm , 2011 .

[70]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[71]  M. Pastor,et al.  A stabilized Fractional Step, Runge–Kutta Taylor SPH algorithm for coupled problems in geomechanics , 2012 .

[72]  Giovanni B. Crosta,et al.  Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps) , 2008 .

[73]  J. Monaghan,et al.  SPH simulation of multi-phase flow , 1995 .

[74]  Oldrich Hungr,et al.  Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism , 2004 .