A Framework for n-Dimensional Visibility Computations

This chapter introduces global visibility computation using Grassmann Algebra. Visibility computation is a fundamental task in computer graphics, as in many other scientific domains. While it is well understood in two dimensions, this does not remain true in higher-dimensional spaces.

[1]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[2]  Tom Nadas,et al.  Rendering Techniques , 1988, Advances in Computer Graphics.

[3]  Tomas Akenine-Möller,et al.  Fast, Minimum Storage Ray-Triangle Intersection , 1997, J. Graphics, GPU, & Game Tools.

[4]  Tomas Akenine-Möller,et al.  Fast, Minimum Storage Ray-Triangle Intersection , 1997, J. Graphics, GPU, & Game Tools.

[5]  Brittany Terese Fasy,et al.  Review of Geometric algebra for computer science by Leo Dorst, Daniel Fontijne, and Stephen Mann (Morgan Kaufmann Publishers, 2007) , 2008, SIGA.

[6]  Edwin H. Blake,et al.  Exact From-Region Visibility Culling , 2002, Rendering Techniques.

[7]  Kellogg S. Booth,et al.  Report from the chair , 1986 .

[8]  Markus Wagner,et al.  Interactive Rendering with Coherent Ray Tracing , 2001, Comput. Graph. Forum.

[9]  Carlo H. Séquin,et al.  Visibility preprocessing for interactive walkthroughs , 1991, SIGGRAPH.

[10]  Frédo Durand,et al.  The 3D visibility complex , 2002, TOGS.

[11]  Shaun Nirenstein,et al.  A low dimensional framework for exact polygon-to-polygon occlusion queries , 2005, EGSR '05.

[12]  Seth J. Teller,et al.  Computing the antipenumbra of an area light source , 1992, SIGGRAPH.

[13]  Valerio Pascucci,et al.  Splitting a complex of convex polytopes in any dimension , 1996, SCG '96.

[14]  Frédo Durand,et al.  The visibility skeleton: a powerful and efficient multi-purpose global visibility tool , 1997, SIGGRAPH.

[15]  Jirí Bittner,et al.  Exact regional visibility using line space partitioning , 2003, Comput. Graph..

[16]  Lilian Aveneau,et al.  Coherent and Exact Polygon-to-Polygon Visibility , 2005, WSCG.

[17]  Marco Pellegrini Ray Shooting and Lines in Space , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[18]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[19]  Michel Pocchiola,et al.  The visibility complex , 1993, SCG '93.

[20]  Stephen Mann,et al.  Geometric algebra for computer science - an object-oriented approach to geometry , 2007, The Morgan Kaufmann series in computer graphics.

[21]  John Amanatides,et al.  Merging BSP trees yields polyhedral set operations , 1990, SIGGRAPH.

[22]  Frédo Durand,et al.  Using the Visibility Complex for Radiosity Computation , 1996, WACG.

[23]  Ji ˇ ´ Bittner,et al.  Hierarchical Techniques for Visibility Computations , 2002 .

[24]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[25]  Lilian Aveneau,et al.  Fast and exact direct illumination , 2005, International 2005 Computer Graphics.