Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction
暂无分享,去创建一个
Josef Zweck | Knut Müller | Florian F. Krause | Marco Schowalter | Peter Schattschneider | Andreas Rosenauer | Stefan Löffler | Johan Verbeeck | P. Schattschneider | J. Verbeeck | A. Rosenauer | J. Zweck | F. Krause | M. Schowalter | K. Müller | A. Béché | Vincent Galioit | S. Löffler | Armand Béché | Vincent Galioit
[1] J. Rodenburg,et al. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[2] E. Tsymbal,et al. Ferroelectric tunnel junctions: Beyond the barrier. , 2013, Nature materials.
[3] Isamu Akasaki,et al. Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .
[4] Naoya Shibata,et al. New area detector for atomic-resolution scanning transmission electron microscopy. , 2010, Journal of electron microscopy.
[5] S. Denbaars,et al. High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-plane Bulk GaN Substrate , 2007 .
[6] J. M. Cowley,et al. The scattering of electrons by atoms and crystals. I. A new theoretical approach , 1957 .
[7] H Rose,et al. Nonstandard imaging methods in electron microscopy. , 1977, Ultramicroscopy.
[8] H. Bethe. Theorie der Beugung von Elektronen an Kristallen , 1928 .
[9] S. Pikker,et al. Springer Proceedings in Physics , 2013 .
[10] Dirk C. Keene. Acknowledgements , 1975 .
[11] G. Tendeloo,et al. Three-dimensional atomic imaging of crystalline nanoparticles , 2011, Nature.
[12] P. Schattschneider,et al. Correlation and the density-matrix approach to inelastic electron holography in solid state plasmas , 2005 .
[13] J. Rodenburg,et al. An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.
[14] Jannik C. Meyer,et al. Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. , 2011, Nature materials.
[15] F. Glas,et al. First-principles calculations of 002 structure factors for electron scattering in strained InxGa1−xAs , 2005 .
[16] M. Nelhiebel,et al. Density matrix of inelastically scattered fast electrons , 1999 .
[17] Lewys Jones,et al. Identifying and Correcting Scan Noise and Drift in the Scanning Transmission Electron Microscope , 2013, Microscopy and Microanalysis.
[18] A. Rosenauer,et al. STEMSIM—a New Software Tool for Simulation of STEM HAADF Z-Contrast Imaging , 2008 .
[19] A. Weickenmeier,et al. Computation of absorptive form factors for high-energy electron diffraction , 1991 .
[20] John M. Rodenburg,et al. Experimental tests on double-resolution coherent imaging via STEM , 1993 .
[21] S. Nakamura,et al. Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .
[22] P. Ehrenfest. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik , 1927 .
[23] Naoya Shibata,et al. Differential phase-contrast microscopy at atomic resolution , 2012, Nature Physics.
[24] N. Ming,et al. Colossal electroresistance in metal/ferroelectric/semiconductor tunnel diodes for resistive switching memories , 2012, 1208.5300.
[25] Josef Zweck,et al. Differential phase contrast 2.0--opening new "fields" for an established technique. , 2012, Ultramicroscopy.
[26] H. Soltau,et al. Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device , 2012 .
[27] Hisashi Yamada,et al. Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (1 0 0) and semipolar (1 1 2) orientations , 2009 .
[28] N. Shibata,et al. Dynamics of annular bright field imaging in scanning transmission electron microscopy. , 2010, Ultramicroscopy.
[29] P. Batson,et al. The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. , 1978, Ultramicroscopy.
[30] Di Wu,et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. , 2013, Nature materials.
[31] D. Van dyck. Is the frozen phonon model adequate to describe inelastic phonon scattering? , 2009, Ultramicroscopy.
[32] Hermann Kohlstedt,et al. Tunneling Across a Ferroelectric , 2006, Science.
[33] P. Nellist. Atomic resolution comes into phase , 2012, Nature Physics.
[34] C. Jia,et al. Atomic-Resolution Measurement of Oxygen Concentration in Oxide Materials , 2004, Science.
[35] J. Zweck,et al. TEM imaging and evalution of magnetic structures in Co/Cu multilayers , 1997 .
[36] J. Rodenburg,et al. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.
[37] S. J. Hermsdoerfer,et al. Direct observation of domain wall structures in curved permalloy wires containing an antinotch , 2008, 0802.1814.
[38] S. Ferrari,et al. Author contributions , 2021 .
[39] H. Hoffmann,et al. Investigation of the micromagnetic structure of cross‐tie walls in permalloy , 1993 .
[40] D. Dyck. Is the frozen phonon model adequate to describe inelastic phonon scattering , 2009 .
[41] J. Titantah,et al. Temperature-dependent Debye-Waller factors for semiconductors with the wurtzite-type structure. , 2009, Acta crystallographica. Section A, Foundations of crystallography.