Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

[1]  J. Rodenburg,et al.  The theory of super-resolution electron microscopy via Wigner-distribution deconvolution , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[2]  E. Tsymbal,et al.  Ferroelectric tunnel junctions: Beyond the barrier. , 2013, Nature materials.

[3]  Isamu Akasaki,et al.  Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .

[4]  Naoya Shibata,et al.  New area detector for atomic-resolution scanning transmission electron microscopy. , 2010, Journal of electron microscopy.

[5]  S. Denbaars,et al.  High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-plane Bulk GaN Substrate , 2007 .

[6]  J. M. Cowley,et al.  The scattering of electrons by atoms and crystals. I. A new theoretical approach , 1957 .

[7]  H Rose,et al.  Nonstandard imaging methods in electron microscopy. , 1977, Ultramicroscopy.

[8]  H. Bethe Theorie der Beugung von Elektronen an Kristallen , 1928 .

[9]  S. Pikker,et al.  Springer Proceedings in Physics , 2013 .

[10]  Dirk C. Keene Acknowledgements , 1975 .

[11]  G. Tendeloo,et al.  Three-dimensional atomic imaging of crystalline nanoparticles , 2011, Nature.

[12]  P. Schattschneider,et al.  Correlation and the density-matrix approach to inelastic electron holography in solid state plasmas , 2005 .

[13]  J. Rodenburg,et al.  An improved ptychographical phase retrieval algorithm for diffractive imaging. , 2009, Ultramicroscopy.

[14]  Jannik C. Meyer,et al.  Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. , 2011, Nature materials.

[15]  F. Glas,et al.  First-principles calculations of 002 structure factors for electron scattering in strained InxGa1−xAs , 2005 .

[16]  M. Nelhiebel,et al.  Density matrix of inelastically scattered fast electrons , 1999 .

[17]  Lewys Jones,et al.  Identifying and Correcting Scan Noise and Drift in the Scanning Transmission Electron Microscope , 2013, Microscopy and Microanalysis.

[18]  A. Rosenauer,et al.  STEMSIM—a New Software Tool for Simulation of STEM HAADF Z-Contrast Imaging , 2008 .

[19]  A. Weickenmeier,et al.  Computation of absorptive form factors for high-energy electron diffraction , 1991 .

[20]  John M. Rodenburg,et al.  Experimental tests on double-resolution coherent imaging via STEM , 1993 .

[21]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[22]  P. Ehrenfest Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik , 1927 .

[23]  Naoya Shibata,et al.  Differential phase-contrast microscopy at atomic resolution , 2012, Nature Physics.

[24]  N. Ming,et al.  Colossal electroresistance in metal/ferroelectric/semiconductor tunnel diodes for resistive switching memories , 2012, 1208.5300.

[25]  Josef Zweck,et al.  Differential phase contrast 2.0--opening new "fields" for an established technique. , 2012, Ultramicroscopy.

[26]  H. Soltau,et al.  Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device , 2012 .

[27]  Hisashi Yamada,et al.  Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (1 0   0) and semipolar (1 1   2) orientations , 2009 .

[28]  N. Shibata,et al.  Dynamics of annular bright field imaging in scanning transmission electron microscopy. , 2010, Ultramicroscopy.

[29]  P. Batson,et al.  The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. , 1978, Ultramicroscopy.

[30]  Di Wu,et al.  Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. , 2013, Nature materials.

[31]  D. Van dyck Is the frozen phonon model adequate to describe inelastic phonon scattering? , 2009, Ultramicroscopy.

[32]  Hermann Kohlstedt,et al.  Tunneling Across a Ferroelectric , 2006, Science.

[33]  P. Nellist Atomic resolution comes into phase , 2012, Nature Physics.

[34]  C. Jia,et al.  Atomic-Resolution Measurement of Oxygen Concentration in Oxide Materials , 2004, Science.

[35]  J. Zweck,et al.  TEM imaging and evalution of magnetic structures in Co/Cu multilayers , 1997 .

[36]  J. Rodenburg,et al.  Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging , 2012, Nature Communications.

[37]  S. J. Hermsdoerfer,et al.  Direct observation of domain wall structures in curved permalloy wires containing an antinotch , 2008, 0802.1814.

[38]  S. Ferrari,et al.  Author contributions , 2021 .

[39]  H. Hoffmann,et al.  Investigation of the micromagnetic structure of cross‐tie walls in permalloy , 1993 .

[40]  D. Dyck Is the frozen phonon model adequate to describe inelastic phonon scattering , 2009 .

[41]  J. Titantah,et al.  Temperature-dependent Debye-Waller factors for semiconductors with the wurtzite-type structure. , 2009, Acta crystallographica. Section A, Foundations of crystallography.