Modified bar recursion

This paper studies modified bar recursion, a higher type recursion scheme, which has been used in Berardi et al. (1998) and Berger and Oliva (2005) for a realisability interpretation of classical analysis. A complete clarification of its relation to Spector's and Kohlenbach's bar recursion, the fan functional, Gandy's functional $\Gamma$ and Kleene's notion of S1–S9 computability is given.

[1]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[2]  C. Spector Provably recursive functionals of analysis: a consistency proof of analysis by an extension of princ , 1962 .

[3]  Georg Kreisel,et al.  Transfinite induction and bar induction of types zero and one, and the role of continuity in intuitionistic analysis , 1966, Journal of Symbolic Logic.

[4]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[5]  D. Dalen Review: Georg Kreisel, Godel's Intepretation of Heyting's Arithmetic; G. Kreisel, Relations Between Classes of Constructive Functionals; Georg Kreisel, A. Heyting, Interpretation of Analysis by Means of Constructive Functionals of Finite Types , 1971 .

[6]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[7]  H. Luckhardt Extensional Godel functional interpretation;: A consistency proof of classical analysis , 1973 .

[8]  R. Gandy,et al.  Computable and recursively countable functions of higher type , 1977 .

[9]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[10]  Y. Ershov Model of Partial Continuous Functionals , 1977 .

[11]  Helmut Schwichtenberg,et al.  On bar recursion of types 0 and 1 , 1979, Journal of Symbolic Logic.

[12]  D. Normann Recursion on the countable functionals , 1980 .

[13]  D. Normann The countable functionals , 1980 .

[14]  Marc Bezem,et al.  Strongly majorizable functionals of finite type: A model for barrecursion containing discontinuous functionals , 1985, Journal of Symbolic Logic.

[15]  Marc Bezem Equivalence of bar recursors in the theory of functionals of finite type , 1988, Arch. Math. Log..

[16]  F. Jones There and back again , 1989, Nature.

[17]  Ulrich Berger,et al.  Program Extraction from Classical Proofs , 1994, LCC.

[18]  Jeremy Avigad,et al.  Chapter V – Gödel’s Functional (“Dialectica”) Interpretation , 1998 .

[19]  Thierry Coquand,et al.  On the computational content of the axiom of choice , 1994, The Journal of Symbolic Logic.

[20]  Alex K. Simpson,et al.  Lazy Functional Algorithms for Exact Real Functionals , 1998, MFCS.

[21]  S. Buss Handbook of proof theory , 1998 .

[22]  Dag Normann,et al.  The Continuous Functionals , 1999, Handbook of Computability Theory.

[23]  Olivier Danvy,et al.  Syntactic Theories in Practice , 2001, RULE@PLI.

[24]  Ronald Cramer,et al.  Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups , 2002, CRYPTO.

[25]  Anna Pagh,et al.  Solving the String Statistics Problem in Time O(n log n) , 2002, ICALP.

[26]  Lasse R. Nielsen A Simple Correctness Proof of the Direct-Style Transformation , 2002 .

[27]  Anna Ingólfsdóttir,et al.  A Formalization of Linkage Analysis , 2002 .

[28]  Paulo Oliva,et al.  Modified Bar Recursion , 2002 .

[29]  Z. Ésik,et al.  Equational Axioms for Probabilistic Bisimilarity (Preliminary Report) , 2002 .

[30]  Helmut Schwichtenberg,et al.  Refined program extraction form classical proofs , 2002, Ann. Pure Appl. Log..

[31]  Aske Simon Christensen,et al.  Extending Java for high-level Web service construction , 2002, TOPL.

[32]  U. Kohlenbach Uniform asymptotic regularity for Mann iterates , 2002 .

[33]  Paulo Oliva,et al.  MODIFIED BAR RECURSION AND CLASSICAL DEPENDENT CHOICE , 2004 .

[34]  Ulrich Berger,et al.  Strong normalisation for applied lambda calculi , 2005, ArXiv.

[35]  Olivier Danvy,et al.  On one-pass CPS transformations , 2002, Journal of Functional Programming.

[36]  MODIFIED BAR RECURSION AND CLASSICAL DEPENDENT , .