Estimation of pore diameter for intraparticle fluid flow in bidisperse porous chromatographic particles

Abstract A quantitative method is developed and presented for estimating the mean pore diameter, d pore , that could allow intraparticle fluid flow in the macroporous region of adsorbent particles with a bidisperse porous structure packed in a column. The method is used to estimate the value of d pore that is required to obtain specified values of the fraction, F , of the column superficial fluid velocity that is flowing through the macroporous region of the adsorbent particles and the value of d pore that is required to obtain specified values of the intraparticle Peclet number, Pe intra .

[1]  Douglas M. Ruthven,et al.  Principles of Adsorption and Adsorption Processes , 1984 .

[2]  N. Epstein,et al.  Creeping flow relative to permeable spheres , 1973 .

[3]  A. Liapis,et al.  Applications of mathematical modelling to the simulation of binary perfusion chromatography , 1993 .

[4]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[5]  C. Horváth,et al.  Effect of Intraparticle Convection on the Chromatography of Biomacromolecules , 1993, Biotechnology progress.

[6]  H. A. Sober,et al.  Handbook of Biochemistry: Selected Data for Molecular Biology , 1971 .

[7]  F. Regnier,et al.  Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography. , 1990, Journal of chromatography.

[8]  A. Liapis,et al.  Modelling and analysis of the elution stage of perfusion chromatography. Effects of intraparticle convective velocity and microsphere size on system performance , 1996 .

[9]  A. Liapis,et al.  Perfusion chromatography: performance of periodic countercurrent column operation and its comparison with fixed-bed operation , 1995 .

[10]  A. Liapis,et al.  Multi-component perfusion chromatography in fixed bed and periodic counter current column operation , 1996 .

[11]  G. Street Highly Selective Separations in Biotechnology , 1994, Springer Netherlands.

[12]  G. Carta,et al.  Chromatography with permeable supports: Theory and comparison with experiments , 1992 .

[13]  Alírio E. Rodrigues,et al.  Diffusion and convection in chromatographic processes using permeable supports with a bidisperse pore structure , 1993 .

[14]  John-Chang Chen,et al.  Permeability of gigaporous particles , 1996 .

[15]  José Carlos B. Lopes,et al.  Importance of intraparticle convection in the performance of chromatographic processes , 1992 .

[16]  A. I. Liapis,et al.  Effects of structural and kinetic parameters on the performance of chromatographic columns packed with perfusive and purely diffusive adsorbent particles , 1996 .

[17]  A. Liapis,et al.  Theory of perfusion chromatography , 1992 .

[18]  A. Liapis,et al.  Perfusion chromatography: Effect of micropore diffusion on column performance in systems utilizing perfusive adsorbent particles with a bidisperse porous structure , 1994 .

[19]  T. L. Hill The structure and properties of porous materials , 1960 .

[20]  A. I. Liapis,et al.  Perfusion chromatography . The effects of intra-particle convective velocity and microsphere size on column performance , 1995 .