Rayleigh optical depth comparisons from various sources.

Rayleigh optical depth values obtained from various computations, tabulations, and parameterizations are not always in good agreement. Important differences as large as 3 or 4% can arise depending on the choice of depolarization factor, the formula used for the refractive index of air, and the choice of standard values for columnar and molecular number densities. The fitting equations generally give rise to the largest differences. The use of different standard altitude profiles for atmospheric pressure and temperature causes a variation of 1% or less in Rayleigh optical depth.

[1]  J. Hill,et al.  Imagebased Atmospheric Correction Of Multi-temporal Thematic Mapper Data For Agricultural Land Cover Classification , 1988, International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century'..

[2]  J. W. Brown,et al.  Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner. , 1988, Applied optics.

[3]  R. Bird,et al.  Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres , 1986 .

[4]  A. Jursa,et al.  Handbook of geophysics and the space environment , 1985 .

[5]  Rachel T. Pinker,et al.  Modeling Surface Solar Radiation: Model Formulation and Validation , 1985 .

[6]  M. Iqbal An introduction to solar radiation , 1983 .

[7]  A. T. Young On the Rayleigh-Scattering Optical Depth of the Atmosphere , 1981 .

[8]  A. T. Young Revised depolarization corrections for atmospheric extinction. , 1980, Applied optics.

[9]  F. X. Kneizys,et al.  Suggested modification to the total volume molecular scattering coefficient in lowtran: comment , 1980 .

[10]  C. Fröhlich,et al.  New determination of Rayleigh scattering in the terrestrial atmosphere. , 1980, Applied optics.

[11]  F. X. Kneizys,et al.  Atmospheric transmittance/radiance: Computer code LOWTRAN 5 , 1978 .

[12]  Bo G Leckner,et al.  The spectral distribution of solar radiation at the earth's surface—elements of a model , 1978 .

[13]  Douglas V. Hoyt,et al.  A Redetermination of the Rayleigh Optical Depth and its Application to Selected Solar Radiation Problems. , 1977 .

[14]  Kinsell L. Coulson,et al.  Solar and Terrestrial Radiation: Methods and Measurements , 1975 .

[15]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[16]  David L. Fried,et al.  Propagation of visible and infrared radiation in the atmosphere , 1974 .

[17]  Thomas B. A. Senior,et al.  Rayleigh scattering , 1973 .

[18]  Edson R. Peck,et al.  Dispersion of Air , 1972 .

[19]  M. Griggs,et al.  Aircraft Measurements and Calculations of the Total Downward Flux of Solar Radiation as a Function of Altitude. , 1969 .

[20]  B. Edĺen The Refractive Index of Air , 1966 .

[21]  L. Elterman Atmospheric Attenuation Model, 1964, in the Ultraviolet, Visible, and Infrared Regions for Altitudes to 50 km , 1964 .

[22]  R. Penndorf,et al.  Tables of the Refractive Index for Standard Air and the Rayleigh Scattering Coefficient for the Spectral Region between 0.2 and 20.0 μ and Their Application to Atmospheric Optics , 1957 .

[23]  F. Möller Strahlung in der unteren Atmosphäre , 1957 .

[24]  B. Edĺen,et al.  The Dispersion of Standard Air , 1953 .

[25]  H. V. A. Briscoe,et al.  427. The isotopic ratio in hydrogen: a general survey by precise density comparisons upon water from various sources. Part II , 1934 .