Modified differential evolution: a greedy random strategy for genetic recombination

Over the past three decades Evolutionary Algorithms have emerged as a powerful mechanism for finding solutions to large and complex problems. A promising new evolutionary algorithm known as Differential Evolution (DE) was recently introduced and has garnered significant attention in the research literature. This paper introduces a modification to DE that enhances its rate of convergence without compromising solution quality. DE was recently shown to outperform several well-known stochastic optimization methods on an extensive set of test problems. Our Modified Differential Evolution (MDE) algorithm utilizes selection pressure to develop offspring that are more fit to survive than those generated from purely random operators. We demonstrate that MDE requires less computational effort to locate global optimal solutions to well-known test problems in the continuous domain.

[1]  S L Shafer,et al.  Unraveling the identity of benzodiazepine binding sites in rat hipppocampus and olfactory bulb. , 2000, European journal of pharmacology.

[2]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[3]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[4]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[5]  Ravindra K. Ahuja,et al.  Developing Fitter Genetic Algorithms , 1997, INFORMS J. Comput..

[6]  B. Růžek,et al.  Differential Evolution Algorithm in the Earthquake Hypocenter Location , 2001 .

[7]  Feng-Sheng Wang,et al.  Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast , 2000 .

[8]  Chyi Hwang,et al.  Optimal approximation of linear systems by a differential evolution algorithm , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[9]  Rainer Storn,et al.  System design by constraint adaptation and differential evolution , 1999, IEEE Trans. Evol. Comput..

[10]  F. Aluffi-Pentini,et al.  Global optimization and stochastic differential equations , 1985 .

[11]  Bruce E. Rosen,et al.  Genetic Algorithms and Very Fast Simulated Reannealing: A comparison , 1992 .

[12]  Ivan Zelinka,et al.  Mechanical engineering design optimization by differential evolution , 1999 .

[13]  William G. Booty,et al.  Design and implementation of an environmental decision support system , 2001, Environ. Model. Softw..

[14]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[15]  G. T. Tsao,et al.  Fuzzy-Decision-Making Problems of Fuel Ethanol Production Using a Genetically Engineered Yeast , 1998 .

[16]  Kay Hameyer,et al.  Optimization of radial active magnetic bearings using the finite element technique and the differential evolution algorithm , 2000 .

[17]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  B. Babu,et al.  Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation , 1999 .

[20]  B. Babu,et al.  Differential evolution for multi-objective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[21]  A. Cafolla A new stochastic optimisation strategy for quantitative analysis of core level photoemission data , 1998 .

[22]  William H. Press,et al.  Numerical recipes in C , 2002 .

[23]  Tim Hendtlass,et al.  A Combined Swarm Differential Evolution Algorithm for Optimization Problems , 2001, IEA/AIE.

[24]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[25]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[26]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[27]  Charu C. Aggarwal,et al.  Optimized Crossover for the Independent Set Problem , 1997, Oper. Res..

[28]  David M. Levine,et al.  A Genetic Algorithm for the Set Partitioning Problem , 1993, International Conference on Genetic Algorithms.

[29]  Hussein A. Abbass,et al.  A Memetic Pareto Evolutionary Approach to Artificial Neural Networks , 2001, Australian Joint Conference on Artificial Intelligence.

[30]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[31]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.

[32]  Hussein A. Abbass,et al.  An evolutionary artificial neural networks approach for breast cancer diagnosis , 2002, Artif. Intell. Medicine.

[33]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[34]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[35]  John Daniel. Bagley,et al.  The behavior of adaptive systems which employ genetic and correlation algorithms : technical report , 1967 .

[36]  G.P.J. Schmitz,et al.  Neurofuzzy modeling of chemical process systems with ellipsoidal radial basis function neural networks and genetic algorithms , 1998 .

[37]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[38]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[39]  Tien-Ting Chang,et al.  An efficient approach for reducing harmonic voltage distortion in distribution systems with active power line conditioners , 2000 .