Expected Effectiveness Based Adaptive Multi-Fidelity Modeling for Efficient Design Optimization

[1]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[2]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[3]  Loïc Le Gratiet,et al.  Cokriging-Based Sequential Design Strategies Using Fast Cross-Validation Techniques for Multi-Fidelity Computer Codes , 2015, Technometrics.

[4]  Joshua D. Deaton,et al.  Adaptive Infill Criteria for Non-Deterministic Kriging Considering Aleatory and Epistemic Uncertainties , 2019 .

[5]  Alexander I. J. Forrester,et al.  Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  M. Eldred,et al.  Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions , 2008 .

[7]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[8]  Karen Willcox,et al.  Multifidelity Uncertainty Propagation via Adaptive Surrogates in Coupled Multidisciplinary Systems , 2018 .

[9]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[10]  Roxanne Moore,et al.  Value-based global optimization , 2014 .

[11]  Joshua D. Deaton,et al.  Multi-Fidelity Modeling using Non-Deterministic Localized-Galerkin Approach , 2019, AIAA Scitech 2019 Forum.

[12]  G. Gary Wang,et al.  ADAPTIVE RESPONSE SURFACE METHOD - A GLOBAL OPTIMIZATION SCHEME FOR APPROXIMATION-BASED DESIGN PROBLEMS , 2001 .

[13]  Layne T. Watson,et al.  Efficient global optimization algorithm assisted by multiple surrogate techniques , 2012, Journal of Global Optimization.

[14]  R. A. Miller,et al.  Sequential kriging optimization using multiple-fidelity evaluations , 2006 .