Digitized adiabatic quantum computing with a superconducting circuit.

Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. Trotter On the product of semi-groups of operators , 1959 .

[3]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[4]  T. Kibble,et al.  Some Implications of a Cosmological Phase Transition , 1980 .

[5]  R. Feynman Simulating physics with computers , 1999 .

[6]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[7]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[8]  de Hans Raedt,et al.  PRODUCT FORMULA METHODS FOR TIME-DEPENDENT SCHRODINGER PROBLEMS , 1990 .

[9]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[10]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[11]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[12]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[13]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[14]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[15]  Umesh V. Vazirani,et al.  How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[16]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[17]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[18]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[19]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[20]  Dogan A. Timucin,et al.  Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning , 2002, quant-ph/0202155.

[21]  T. Hogg,et al.  Experimental implementation of an adiabatic quantum optimization algorithm. , 2003, Physical review letters.

[22]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[23]  Seth Lloyd,et al.  Scalable Architecture for Adiabatic Quantum Computing of Np-Hard Problems , 2004 .

[24]  P. Zoller,et al.  Dynamics of a quantum phase transition. , 2005, Physical review letters.

[25]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[26]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[27]  P. Shor,et al.  Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.

[28]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[29]  Daniel A Lidar,et al.  Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2007, Physical review letters.

[30]  J. Biamonte,et al.  Realizable Hamiltonians for Universal Adiabatic Quantum Computers , 2007, 0704.1287.

[31]  Daniel A. Lidar,et al.  Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.

[32]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[33]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[34]  Vasil S. Denchev,et al.  Training a Binary Classifier with the Quantum Adiabatic Algorithm , 2008, 0811.0416.

[35]  B. Chakrabarti,et al.  Quantum Annealing and Related Optimization Methods , 2008 .

[36]  S. Suzuki Cooling dynamics of pure and random Ising chains , 2008, 0807.2933.

[37]  G. Santoro,et al.  Quantum annealing of an infinite-range transverse-field Ising model , 2009 .

[38]  D. Averin,et al.  Role of single-qubit decoherence time in adiabatic quantum computation , 2008, 0803.1196.

[39]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[40]  F. Verstraete,et al.  Quantum simulation of time-dependent Hamiltonians and the convenient illusion of Hilbert space. , 2011, Physical review letters.

[41]  S. Suzuki Kibble-Zurek mechanism in simulated annealing and quantum annealing , 2011 .

[42]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[43]  Daniel A. Lidar,et al.  High-fidelity adiabatic quantum computation via dynamical decoupling , 2012, 1205.2725.

[44]  L. Clark,et al.  Ramsey numbers and adiabatic quantum computing. , 2011, Physical review letters.

[45]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[46]  Alán Aspuru-Guzik,et al.  Resource efficient gadgets for compiling adiabatic quantum optimization problems , 2013, 1307.8041.

[47]  Daniel A. Lidar,et al.  Adiabatic quantum optimization with the wrong Hamiltonian , 2013, 1310.0529.

[48]  J. S. Pedernales,et al.  Embedding quantum simulators for quantum computation of entanglement. , 2013, Physical review letters.

[49]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[50]  Kevin C. Young,et al.  Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics , 2013, 1307.5892.

[51]  Kevin C. Young,et al.  Error suppression and error correction in adiabatic quantum computation I: techniques and challenges , 2013, 1307.5893.

[52]  Cedric Yen-Yu Lin,et al.  Different Strategies for Optimization Using the Quantum Adiabatic Algorithm , 2014, 1401.7320.

[53]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[54]  Alán Aspuru-Guzik,et al.  Adiabatic Quantum Simulation of Quantum Chemistry , 2013, Scientific Reports.

[55]  Daniel A. Lidar,et al.  Quantum error suppression with commuting Hamiltonians: two local is too local. , 2014, Physical review letters.

[56]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[57]  Umesh Vazirani,et al.  Comment on "Distinguishing Classical and Quantum Models for the D-Wave Device" , 2014, 1404.6499.

[58]  A. Ganti,et al.  Family of [[6k,2k,2]] codes for practical and scalable adiabatic quantum computation , 2013, 1309.1674.

[59]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[60]  J. Martinis,et al.  Fast adiabatic qubit gates using only σ z control , 2014, 1402.5467.

[61]  Ashley Montanaro,et al.  Complexity Classification of Local Hamiltonian Problems , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[62]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[63]  R. Barends,et al.  Qubit metrology of ultralow phase noise using randomized benchmarking , 2014, 1411.2613.

[64]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[65]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[66]  Alán Aspuru-Guzik,et al.  Exponentially more precise quantum simulation of fermions II: Quantum chemistry in the CI matrix representation , 2015 .

[67]  John Preskill,et al.  Error correction for a proposed quantum annealing architecture , 2015 .

[68]  Masoud Mohseni,et al.  Computational Role of Multiqubit Tunneling in a Quantum Annealer , 2015 .

[69]  E. Solano,et al.  Digital quantum simulation of spin models with circuit quantum electrodynamics , 2015, 1502.06778.

[70]  Daniel A. Lidar,et al.  Quantum annealing correction for random Ising problems , 2014, 1408.4382.

[71]  R. Barends,et al.  Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.

[72]  J. Biamonte,et al.  Hamiltonian gadgets with reduced resource requirements , 2013, 1311.2555.

[73]  S. Lloyd,et al.  Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions , 2015, 1509.01278.

[74]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[75]  Sarah E. Sofia,et al.  The Bravyi-Kitaev transformation: Properties and applications , 2015 .

[76]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[77]  Adam D. Bookatz,et al.  Error suppression in Hamiltonian-based quantum computation using energy penalties , 2014, 1407.1485.

[78]  M. Hastings,et al.  From local to global ground states in Ising spin glasses , 2014, 1408.1901.

[79]  Daniel A. Lidar,et al.  Mean Field Analysis of Quantum Annealing Correction. , 2015, Physical review letters.

[80]  E. Solano,et al.  Quantum chemistry and charge transport in biomolecules with superconducting circuits , 2015, Scientific Reports.

[81]  Daniel A. Lidar,et al.  Performance of two different quantum annealing correction codes , 2015, Quantum Inf. Process..

[82]  Vasil S. Denchev,et al.  Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.