The Imbedding Problem for Finite Markov Chains

The problem of characterizing the stochastic matrices which can occur in a continuous time Markov chain was first formulated by Elfving in 1937, see [7 ] and [8 ]. The problem was mentioned by Chung in 1960, [ 1 ] p 203, and in the last 10 years a number of papers have appeared.

[1]  Kai Lai Chung,et al.  Markov Chains with Stationary Transition Probabilities , 1961 .

[2]  James R. Cuthbert,et al.  On Uniqueness of the Logarithm for Markov Semi‐Groups , 1972 .

[3]  P. Martin-Löf Probability theory on discrete semigroups , 1965 .

[4]  D. Vere-Jones FINITE BIVARIATE DISTRIBUTIONS AND SEMIGROUPS OF NON-NEGATIVE MATRICES , 1971 .

[5]  James R. Cuthbert,et al.  The Logarithm Function for Finite‐State Markov Semi‐Groups , 1973 .

[6]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[7]  Two Markov chains with a common skeleton , 1967 .

[8]  Divisible Distributions on Finite Groups , 1971 .

[9]  V. Maksimov Random Processes with Independent Increments with Values in an Arbitrary Finite Group , 1970 .

[10]  Grenzverteilungen von Summen unabhängiger Zufallsgrössen , 1959 .

[11]  Karl Löwner Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I , 1923 .

[12]  G. S. Goodman,et al.  Kolmogorov's differential equations for non-stationary, countable state Markov processes with uniformly continuous transition probabilities , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Søren Johansen,et al.  An application of extreme point methods to the representation of infinitely divisible distributions , 1966 .

[14]  U. Grenander Probabilities on Algebraic Structures , 1964 .

[15]  G. S. Goodman An intrinsic time for non-stationary finite markov chains , 1970 .

[16]  J. Kingman The imbedding problem for finite Markov chains , 1962 .

[17]  David Williams,et al.  The combinatorial structure of non-homogeneous Markov chains , 1973 .

[18]  Ludwig Schlesinger,et al.  Neue Grundlagen für einen Infinitesimalkalkul der Matrizen , 1931 .

[19]  A theorem on the partial order derived from a certain transformation semigroup , 1959 .

[20]  On Elfving's Problem of Imbedding a Time-Discrete Markov -Chain in a Time-Continuous one for Finitely Many States. I , 1962 .

[21]  D. Kendall Delphic semi-groups, infinitely divisible regenerative phenomena, and the arithmetic of p-functions , 1968 .

[22]  S. Johansen A central limit theorem for finite semigroups and its application to the imbedding problem for finite state Markov chains , 1973 .

[23]  S. Johansen,et al.  Some Results on the Imbedding Problem for Finite Markov Chains , 1974 .

[24]  S. Johansen The Bang-Bang problem for stochastic matrices , 1973 .