Exploiting User Preference and Mobile Peer Influence for Human Mobility Annotation

Human mobility annotation aims to assign mobility records the corresponding visiting Point-of-Interests (POIs). It is one of the most fundamental problems for understanding human mobile behaviors. ...

[1]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[2]  Weitong Chen,et al.  Learning Graph-based POI Embedding for Location-based Recommendation , 2016, CIKM.

[3]  S. Sitharama Iyengar,et al.  HiRecS: A Hierarchical Contextual Location Recommendation System , 2019, IEEE Transactions on Computational Social Systems.

[4]  Bertil Chapuis,et al.  Breadcrumbs: A Feature Rich Mobility Dataset with Point of Interest Annotation , 2019, ArXiv.

[5]  Huayu Wu,et al.  CO2 , 2018 .

[6]  Fuzhen Zhuang,et al.  Where to Go Next: A Spatio-Temporal Gated Network for Next POI Recommendation , 2019, AAAI.

[7]  Carsten Rudolph,et al.  P-STM: Privacy-Protected Social Tie Mining of Individual Trajectories , 2019, 2019 IEEE International Conference on Web Services (ICWS).

[8]  Daqing Zhang,et al.  Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs , 2015, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[9]  Minyi Guo,et al.  GraphGAN: Graph Representation Learning with Generative Adversarial Nets , 2017, AAAI.

[10]  Jian Pei,et al.  High-Order Proximity Preserved Embedding for Dynamic Networks , 2018, IEEE Transactions on Knowledge and Data Engineering.

[11]  Benoît Garbinato,et al.  Breadcrumbs: A Rich Mobility Dataset with Point-of-Interest Annotations , 2019, SIGSPATIAL/GIS.

[12]  Jian Pei,et al.  A Survey on Network Embedding , 2017, IEEE Transactions on Knowledge and Data Engineering.

[13]  Charu C. Aggarwal,et al.  An embedding approach to anomaly detection , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[14]  Jian Pei,et al.  Community Preserving Network Embedding , 2017, AAAI.

[15]  Wei Zhang,et al.  PRED: Periodic Region Detection for Mobility Modeling of Social Media Users , 2017, WSDM.

[16]  Enhong Chen,et al.  CEPR: A Collaborative Exploration and Periodically Returning Model for Location Prediction , 2015 .

[17]  Wang-Chien Lee,et al.  Semantic Annotation of Mobility Data using Social Media , 2015, WWW.

[18]  Tieniu Tan,et al.  Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts , 2016, AAAI.

[19]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[20]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[21]  Andrew Hogue,et al.  Learning to rank for spatiotemporal search , 2013, WSDM.

[22]  Shuai Ma,et al.  Why We Go Where We Go: Profiling User Decisions on Choosing POIs , 2020, AAAI 2020.

[23]  Talel Abdessalem,et al.  POI Recommendation: Towards Fused Matrix Factorization with Geographical and Temporal Influences , 2015, RecSys.

[24]  Xiang Li,et al.  Can multiple social ties help improve human location prediction? , 2019, Physica A: Statistical Mechanics and its Applications.

[25]  Jian Li,et al.  Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec , 2017, WSDM.

[26]  Chang Zhou,et al.  Scalable Graph Embedding for Asymmetric Proximity , 2017, AAAI.

[27]  Hui Xiong,et al.  Joint Representation Learning for Multi-Modal Transportation Recommendation , 2019, AAAI.

[28]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[29]  Zhiyuan Liu,et al.  A Neural Network Approach to Joint Modeling Social Networks and Mobile Trajectories , 2016, ArXiv.

[30]  Nitesh V. Chawla,et al.  metapath2vec: Scalable Representation Learning for Heterogeneous Networks , 2017, KDD.

[31]  Shuai Ma,et al.  NCF: A Neural Context Fusion Approach to Raw Mobility Annotation , 2020 .

[32]  Xiaoyong Du,et al.  Cost-Effective Data Annotation using Game-Based Crowdsourcing , 2018, Proc. VLDB Endow..

[33]  Hongzhi Shi,et al.  State-Sharing Sparse Hidden Markov Models for Personalized Sequences , 2019, KDD.

[34]  Yanchi Liu,et al.  Point-of-Interest Demand Modeling with Human Mobility Patterns , 2017, KDD.

[35]  Kai Zheng,et al.  Social Influence-Based Group Representation Learning for Group Recommendation , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[36]  Stefano Spaccapietra,et al.  Semantic trajectories: Mobility data computation and annotation , 2013, TIST.

[37]  Pengfei Wang,et al.  Human Mobility Synchronization and Trip Purpose Detection with Mixture of Hawkes Processes , 2017, KDD.

[38]  Xing Xie,et al.  Mining user similarity based on location history , 2008, GIS '08.

[39]  Fei Wu,et al.  Where Did You Go: Personalized Annotation of Mobility Records , 2016, CIKM.

[40]  Marta C. González,et al.  Coupling human mobility and social ties , 2015, Journal of The Royal Society Interface.