CATEGORICAL STRUCTURES ENRICHED IN A QUANTALOID: CATEGORIES, DISTRIBUTORS AND FUNCTORS

We thoroughly treat several familiar and less familiar definitions and re- sults concerning categories, functors and distributors enriched in a base quantaloid Q.I n analogy with V-category theory we discuss such things as adjoint functors, (pointwise) left Kan extensions, weighted (co)limits, presheaves and free (co)completion, Cauchy completion and Morita equivalence. With an appendix on the universality of the quan- taloid Dist(Q )o fQ-enriched categories and distributors.

[1]  J. Benabou Introduction to bicategories , 1967 .

[2]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[3]  Charles Ehresmann,et al.  Sheaves and Cauchy-complete categories , 1981 .

[4]  Ross Street,et al.  Cauchy characterization of enriched categories , 1981 .

[5]  Ross Street,et al.  ENRICHED CATEGORIES AND COHOMOLOGY , 1983 .

[6]  Ross Street,et al.  Absolute colimits in enriched categories , 1983 .

[7]  Ross Street,et al.  Variation through enrichment , 1983 .

[8]  P. T. Johnstone,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY (London Mathematical Society Lecture Note Series, 64) , 1983 .

[9]  Stefano Kasangian,et al.  An axiomatics for bicategories of modules , 1987 .

[10]  Gilberte Bossche Quantaloids and non-commutative ring representations , 1995, Appl. Categorical Struct..

[11]  K. I. Rosenthal The Theory of Quantaloids , 1996 .

[12]  A. J. Power,et al.  Enrichment through variation , 1997 .

[13]  F. Borceux,et al.  Skew $\Omega $-sets coincide with $\Omega $-posets , 1998 .

[14]  F. Borceux,et al.  Skew Ω-sets coincide with Ω-posets , 1998 .

[15]  Anna Labella,et al.  CHANGE OF BASE, CAUCHY COMPLETENESS AND REVERSIBILITY , 2002 .

[16]  S. Lack,et al.  The formal theory of monads II , 2002 .

[17]  Isar Stubbe,et al.  Categorical structures enriched in a quantaloid: tensored and cotensored categories , 2004, math/0411366.

[18]  Categorical structures enriched in a quantaloid : Regular presheaves, regular semicategories , 2004, math/0409475.

[19]  Isar Stubbe,et al.  Categorical Structures Enriched in a Quantaloid: Orders and Ideals over a Base Quantaloid , 2004, Appl. Categorical Struct..

[20]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.