Computational studies of the gramicidin channel.

Ion channels are highly specific membrane-spanning protein structures which serve to facilitate the passage of selected ions across the lipid barrier. In the past decade, molecular dynamics simulations based on atomic models and realistic microscopic interactions with explicit solvent and membrane lipids have been used to gain insight into the function of these complex systems. These calculations have considerably expanded our view of ion permeation at the microscopic level. This Account will mainly focus on computational studies of the gramicidin A channel, one of the simplest and best characterized molecular pore.

[1]  R M Venable,et al.  Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. , 1993, Science.

[2]  M. Karplus,et al.  Ion transport in the gramicidin channel: free energy of the solvated right-handed dimer in a model membrane , 1993 .

[3]  Benoît Roux,et al.  Potential energy function for cation–peptide interactions: An ab initio study , 1995, J. Comput. Chem..

[4]  B. Roux,et al.  Structure, energetics, and dynamics of lipid–protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer , 1996, Proteins.

[5]  B. Roux,et al.  The backbone 15N chemical shift tensor of the gramicidin channel. A molecular dynamics and density functional study , 1995 .

[6]  K. C. Lee,et al.  Monovalent cation transport: lack of structural deformation upon cation binding. , 1996, Biochemistry.

[7]  S. Schreiber,et al.  Transmembrane channels based on tartaric acid-gramicidin A hybrids. , 1989, Science.

[8]  B. Roux,et al.  Statistical mechanical equilibrium theory of selective ion channels. , 1999, Biophysical journal.

[9]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[10]  O. Andersen,et al.  Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. , 1991, Biochemistry.

[11]  R. Zwanzig High‐Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases , 1954 .

[12]  G. Torrie,et al.  Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid , 1974 .

[13]  B. Roux Influence of the membrane potential on the free energy of an intrinsic protein. , 1997, Biophysical journal.

[14]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[15]  Benoît Roux,et al.  Extracellular Blockade of K+ Channels by Tea , 2001, The Journal of general physiology.

[16]  B. Roux,et al.  Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. , 1998, Biophysical journal.

[17]  H. Michel,et al.  Role of the Water Chain in the Reaction Center from Rb. sphaeroides , 1995 .

[18]  E. Jakobsson,et al.  Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels. , 1987, Biophysical journal.

[19]  P. H. Berens,et al.  Structure and dynamics of ion transport through gramicidin A. , 1984, Biophysical journal.

[20]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[21]  R. MacKinnon,et al.  The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. , 1999, Science.

[22]  Benoît Roux,et al.  Non-additivity in cation—peptide interactions. A molecular dynamics and ab initio study of Na+ in the gramicidin channel , 1993 .

[23]  W. Im,et al.  Ion channels, permeation, and electrostatics: insight into the function of KcsA. , 2000, Biochemistry.

[24]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[25]  W. Im,et al.  Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry , 2001 .

[26]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[27]  B. Roux,et al.  Valence selectivity of the gramicidin channel: a molecular dynamics free energy perturbation study. , 1996, Biophysical journal.

[28]  V. Torre,et al.  Potassium and sodium binding to the outer mouth of the K+ channel. , 1999, Biochemistry.

[29]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[30]  E. Oldfield,et al.  Deuterium nuclear magnetic resonance studies of the interaction between dimyristoylphosphatidylcholine and gramicidin A'. , 1979, Biochemistry.

[31]  B. Roux,et al.  Energetics of ion conduction through the K + channel , 2022 .

[32]  J. F. Hinton,et al.  Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. , 2001, Biochemistry.

[33]  B. Roux,et al.  Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Benoît Roux,et al.  Theoretical Study of H+ Translocation along a Model Proton Wire , 1996 .

[35]  David Chandler,et al.  Statistical mechanics of isomerization dynamics in liquids and the transition state approximation , 1978 .

[36]  E. Jakobsson,et al.  Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex. , 1999, Biophysical journal.

[37]  M S Sansom,et al.  Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. , 1998, Biochemistry.

[38]  W. Im,et al.  Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation , 1998 .

[39]  D. Dougherty,et al.  Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. , 2001, Biophysical journal.

[40]  P. Kebarle,et al.  Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M+(H2O)n-1 + H2O = M+(H2O)n , 1970 .

[41]  B. Cornell,et al.  Solid-state 13C-NMR studies of the effects of sodium ions on the gramicidin A ion channel. , 1990, Biochimica et biophysica acta.

[42]  John E. Straub,et al.  Classical and modern methods in reaction rate theory , 1988 .

[43]  M Karplus,et al.  Molecular dynamics simulations of the gramicidin channel. , 1994, Annual review of biophysics and biomolecular structure.

[44]  H J Morowitz,et al.  Molecular mechanisms for proton transport in membranes. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Tissandier,et al.  The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data , 1998 .

[46]  G. Voth,et al.  The formation and dynamics of proton wires in channel environments. , 2001, Biophysical journal.

[47]  B. Roux,et al.  Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. , 2000, Biophysical journal.

[48]  O. Andersen,et al.  Molecular determinants of channel function. , 1992, Physiological reviews.

[49]  M Karplus,et al.  Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy. , 1995, Biophysical journal.

[50]  K Schulten,et al.  Structural determinants of MscL gating studied by molecular dynamics simulations. , 2001, Biophysical journal.

[51]  I. Shrivastava,et al.  Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. , 2000, Biophysical journal.

[52]  P McGill,et al.  Boundary conditions for- single-ion diffusion. , 1996, Biophysical journal.

[53]  Shin-Ho Chung,et al.  Permeation of ions across the potassium channel: Brownian dynamics studies. , 1999, Biophysical journal.

[54]  E. Jakobsson,et al.  Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II. Rates and mechanisms of water transport. , 1999, Biophysical journal.

[55]  Randal R Ketchem,et al.  High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. , 1993, Science.

[56]  Frank H. Stillinger,et al.  Polarization model for water and its ionic dissociation products , 1978 .

[57]  Y. Ovchinnikov,et al.  1H‐NMR study of gramicidin A transmembrane ion channel , 1985, FEBS letters.

[58]  B. Roux,et al.  A combined molecular dynamics and diffusion model of single proton conduction through gramicidin. , 2000, Biophysical journal.

[59]  M. Schumaker,et al.  Framework model for single proton conduction through gramicidin. , 2001, Biophysical journal.

[60]  H. Berendsen,et al.  A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[61]  B. Roux,et al.  The binding site of sodium in the gramicidin A channel. , 1999, Novartis Foundation symposium.

[62]  B. Roux,et al.  Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. , 1996, Biophysical journal.

[63]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[64]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[65]  B. Roux,et al.  A molecular dynamics study of gating in dioxolane-linked gramicidin A channels. , 1994, Biophysical journal.

[66]  P. Kebarle,et al.  Reaction Enthalpies for M+L = M+ + L, Where M+ = Na+ and K+ and L = Acetamide, N-Methylacetamide, N,N-Dimethylacetamide, Glycine, and Glycylglycine, from Determinations of the Collision-Induced Dissociation Thresholds , 1996 .