Contribution of retrotransposition to developmental disorders

[1]  Matthew E Hurles,et al.  Exome-wide assessment of the functional impact and pathogenicity of multinucleotide mutations , 2019, Genome research.

[2]  S. Saccani,et al.  The Landscape of L1 Retrotransposons in the Human Genome Is Shaped by Pre-insertion Sequence Biases and Post-insertion Selection. , 2019, Molecular cell.

[3]  Grace Tiao,et al.  An open resource of structural variation for medical and population genetics , 2019 .

[4]  Joan,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[5]  Stephan J Sanders,et al.  Integrative functional genomic analysis of human brain development and neuropsychiatric risks , 2018, Science.

[6]  Patrick J. Short,et al.  Pathogenicity and selective constraint on variation near splice sites , 2018, bioRxiv.

[7]  M. Hurles,et al.  Exome-wide assessment of the functional impact and pathogenicity of multi-nucleotide mutations , 2018, bioRxiv.

[8]  Caroline F. Wright,et al.  Common genetic variants contribute to risk of rare severe neurodevelopmental disorders , 2018, Nature.

[9]  Ryan L. Collins,et al.  An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder , 2018, Nature Genetics.

[10]  Lilia M. Iakoucheva,et al.  Paternally inherited cis-regulatory structural variants are associated with autism , 2018, Science.

[11]  Caroline F. Wright,et al.  De novo mutations in regulatory elements in neurodevelopmental disorders , 2018, Nature.

[12]  M. Hurles,et al.  Exome-wide assessment of the functional impact and pathogenicity of multi-nucleotide mutations , 2018, bioRxiv.

[13]  Patrick J. Short,et al.  The contribution of non-canonical splicing mutations to severe dominant developmental disorders , 2018 .

[14]  Tomas W. Fitzgerald,et al.  Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1133 families with developmental disorders , 2017, Genetics in Medicine.

[15]  James D Stephenson,et al.  Quantifying the contribution of recessive coding variation to developmental disorders , 2017, Science.

[16]  Ryan L. Collins,et al.  Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly , 2018, Cell.

[17]  Tomas W. Fitzgerald,et al.  Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1133 families with developmental disorders , 2017, Genetics in Medicine.

[18]  Hannes P. Eggertsson,et al.  Parental influence on human germline de novo mutations in 1,548 trios from Iceland , 2017, Nature.

[19]  Ryan E. Mills,et al.  The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology , 2017, Genome research.

[20]  Yan Zhang,et al.  Landscape and variation of novel retroduplications in 26 human populations , 2017, PLoS Comput. Biol..

[21]  Izabela Makałowska,et al.  Protein-Coding Genes’ Retrocopies and Their Functions , 2017, Viruses.

[22]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[23]  Vladimir Potapov,et al.  Examining Sources of Error in PCR by Single-Molecule Sequencing , 2017, PloS one.

[24]  Nucleic Acids Research , 2017, Nucleic acids research.

[25]  D. Karolchik,et al.  The UCSC Genome Browser database: 2017 update , 2016, Nucleic Acids Res..

[26]  Tomas W. Fitzgerald,et al.  Detection of structural mosaicism from targeted and whole-genome sequencing data , 2016, bioRxiv.

[27]  H. Kazazian,et al.  Roles for retrotransposon insertions in human disease , 2016, Mobile DNA.

[28]  Amina Noor,et al.  Frequency and Complexity of De Novo Structural Mutation in Autism. , 2016, American journal of human genetics.

[29]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[30]  Dan M. Bolser,et al.  Ensembl Genomes 2016: more genomes, more complexity , 2015, Nucleic Acids Res..

[31]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[32]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[33]  Alexandros Kanterakis,et al.  A high-quality human reference panel reveals the complexity and distribution of genomic structural variants , 2016, Nature Communications.

[34]  A L Turinsky,et al.  NSD1 mutations generate a genome-wide DNA methylation signature , 2015, Nature Communications.

[35]  Stephan J Sanders,et al.  Frequency and complexity of de novo structural mutation in autism , 2015, bioRxiv.

[36]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[37]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[38]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[39]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[40]  Alejandro Sifrim,et al.  Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data , 2015, The Lancet.

[41]  R. Abou Jamra,et al.  Inhibition of RAS Activation Due to a Homozygous Ezrin Variant in Patients with Profound Intellectual Disability , 2015, Human mutation.

[42]  A. Quinlan BEDTools: The Swiss‐Army Tool for Genome Feature Analysis , 2014, Current protocols in bioinformatics.

[43]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[44]  Miriam K. Konkel,et al.  Rates and patterns of great ape retrotransposition , 2013, Proceedings of the National Academy of Sciences.

[45]  M. Batzer,et al.  LSU Digital Commons LSU Digital Commons Mobile element scanning (ME-Scan) identifies thousands of novel Mobile element scanning (ME-Scan) identifies thousands of novel Alu insertions in diverse human populations Alu insertions in diverse human populations , 2022 .

[46]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[47]  Glenn Tesler,et al.  Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory , 2012, BMC Bioinformatics.

[48]  B. Faircloth,et al.  Primer3—new capabilities and interfaces , 2012, Nucleic acids research.

[49]  Joseph K. Pickrell,et al.  A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes , 2012, Science.

[50]  A. Visel,et al.  Large-Scale Discovery of Enhancers from Human Heart Tissue , 2011, Nature Genetics.

[51]  T. Callens,et al.  The NF1 Gene Contains Hotspots for L1 Endonuclease-Dependent De Novo Insertion , 2011, PLoS genetics.

[52]  Adrian M. Stütz,et al.  A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans , 2011, PLoS genetics.

[53]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[54]  Ying Zhang,et al.  Distributions of Transposable Elements Reveal Hazardous Zones in Mammalian Introns , 2011, PLoS Comput. Biol..

[55]  H. Kazazian,et al.  High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. , 2010, Genome research.

[56]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[57]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[58]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[59]  Manuel Corpas,et al.  DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. , 2009, American journal of human genetics.

[60]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[61]  Ryan E. Mills,et al.  Which transposable elements are active in the human genome? , 2007, Trends in genetics : TIG.

[62]  Inna Dubchak,et al.  VISTA Enhancer Browser—a database of tissue-specific human enhancers , 2006, Nucleic Acids Res..

[63]  J. V. Moran,et al.  Multiple Fates of L1 Retrotransposition Intermediates in Cultured Human Cells , 2005, Molecular and Cellular Biology.

[64]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[65]  Mark Gerstein,et al.  Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. , 2003, Genome research.

[66]  L. Duret,et al.  Nature and structure of human genes that generate retropseudogenes. , 2000, Genome research.

[67]  J. Jurka,et al.  Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[68]  G. A. Watterson On the number of segregating sites in genetical models without recombination. , 1975, Theoretical population biology.