Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator

[1]  U. Schmidt-Erfurth,et al.  Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. , 2005, Investigative ophthalmology & visual science.

[2]  Stephen A. Burns,et al.  Investigating the light absorption in a single pass through the photoreceptor layer by means of the lipofuscin fluorescence , 2005, Vision Research.

[3]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[4]  Harald Sattmann,et al.  Three-dimensional ultrahigh resolution optical coherence tomography of retinal pathologies , 2005, European Conference on Biomedical Optics.

[5]  P. Artal,et al.  Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser. , 2005, Optics express.

[6]  J. Duker,et al.  Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. , 2004, Ophthalmology.

[7]  Pablo Artal,et al.  Adaptive optics with a programmable phase modulator: applications in the human eye. , 2004, Optics express.

[8]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[9]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[10]  W Drexler,et al.  Ultrahigh resolution Fourier domain optical coherence tomography. , 2004, Optics express.

[11]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[12]  Ian Munro,et al.  Benefit of higher closed-loop bandwidths in ocular adaptive optics. , 2003, Optics express.

[13]  G. Tempea,et al.  Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser , 2003 .

[14]  Ravi S. Jonnal,et al.  Coherence gating and adaptive optics in the eye , 2003, SPIE BiOS.

[15]  W Drexler,et al.  Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography. , 2003, Optics letters.

[16]  Pablo Artal,et al.  Membrane deformable mirror for adaptive optics: performance limits in visual optics. , 2003, Optics express.

[17]  J. Fujimoto,et al.  Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. , 2003, Archives of ophthalmology.

[18]  A. Bradley,et al.  Statistical variation of aberration structure and image quality in a normal population of healthy eyes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  David Williams,et al.  Optical fiber properties of individual human cones. , 2002, Journal of vision.

[20]  Norberto López-Gil,et al.  Ocular wave-front aberration statistics in a normal young population , 2002, Vision Research.

[21]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[22]  D. Williams,et al.  Monochromatic aberrations of the human eye in a large population. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  B. Singer,et al.  Improvement in retinal image quality with dynamic correction of the eye's aberrations. , 2001, Optics express.

[24]  I Iglesias,et al.  Closed-loop adaptive optics in the human eye. , 2001, Optics letters.

[25]  P Artal,et al.  Dynamics of the eye's wave aberration. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[27]  P Artal,et al.  Analysis of the performance of the Hartmann-Shack sensor in the human eye. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[29]  Naohisa Mukohzaka,et al.  Phase Modulation Characteristics Analysis of Optically-Addressed Parallel-Aligned Nematic Liquid Crystal Phase-Only Spatial Light Modulator Combined with a Liquid Crystal Display , 1998 .

[30]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[31]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[32]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[33]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991, LEOS '92 Conference Proceedings.

[34]  F. Delori,et al.  Spectral reflectance of the human ocular fundus. , 1989, Applied optics.

[35]  I P Krebs,et al.  Discontinuities of the external limiting membrane in the fovea centralis of the primate retina. , 1989, Experimental eye research.

[36]  J. Enoch Optical Properties of the Retinal Receptors , 1963 .

[37]  Vision Research , 1961, Nature.

[38]  W. Stiles,et al.  Luminous Efficiency of Rays entering the Eye Pupil at Different Points , 1937, Nature.