Customized Evolutionary Optimization of Compliant Mechanism to Generate Multiple Light Weight Topologies

The present work focuses on evolving the multiple light-in-weight topologies of compliant mechanism tracing user defined path. Therefore in this paper, the bi-objective set is formulated first on the optimization frame-work in which the helper objective of maximum diversity is introduced with the primary objective of minimum weight of elastic structures. Thereafter, the evolutionary algorithm (NSGA-II) is customized to efficiently deal with the constraint bi-objective, non-linear and discrete problem of compliant mechanisms. The existing NSGA-II algorithm is modified with various aspects and schemes such as, domain specific population strategy, domain specific crossover, parallel computing, minimum weight local search method etc. The flexibility of identifying the applied and boundary conditions of elastic structures are also coupled with the customized NSGA-II algorithm to promote non-dominated solutions. Two examples of compliant mechanisms tracing (i) curvilinear path and (ii) straight line path are solved and their light-in-weight topologies are presented.

[1]  Ren-Jye Yang,et al.  Optimal topology design using linear programming , 1994 .

[2]  G. K. Ananthasuresh,et al.  Optimal Synthesis Methods for MEMS , 2003 .

[3]  H. Rodrigues,et al.  Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing , 2006 .

[4]  M. Jakiela,et al.  Genetic algorithm-based structural topology design with compliance and topology simplification considerations , 1996 .

[5]  Patrick V. Hull,et al.  Optimal synthesis of compliant mechanisms using subdivision and commercial FEA , 2006 .

[6]  T. Ray,et al.  Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape , 2002 .

[7]  Mark J. Jakiela,et al.  Generation and Classification of Structural Topologies With Genetic Algorithm Speciation , 1997 .

[8]  Kang Tai,et al.  Target-matching test problem for multiobjective topology optimization using genetic algorithms , 2007 .

[9]  Kang Tai,et al.  Design of structures and compliant mechanisms by evolutionary optimization of morphological representations of topology , 2000 .

[10]  Philippe Bidaud,et al.  A new compliant mechanism design methodology based on flexible building blocks , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  O. Sigmund,et al.  Stiffness design of geometrically nonlinear structures using topology optimization , 2000 .

[12]  Anupam Saxena,et al.  Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports , 2005 .

[13]  Sridhar Kota,et al.  Strategies for systematic synthesis of compliant mems , 1994 .

[14]  Kalyanmoy Deb,et al.  Developing Multiple Topologies of Path Generating Compliant Mechanism ( PGCM ) using Evolutionary Optimization , 2009 .

[15]  K. Deb,et al.  Advancement of Path Generating Compliant Mechanisms ( PGCM ) Topologies by Initial Population Strategy of Customized Evolutionary Algorithm , 2009 .

[16]  Kerr-Jia Lu Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization , 2006 .

[17]  Ole Sigmund,et al.  Topology synthesis of large‐displacement compliant mechanisms , 2001 .

[18]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[19]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[20]  J. F. Aguilar Madeira,et al.  Multi-objective optimization of structures topology by genetic algorithms , 2005, Adv. Eng. Softw..

[21]  R. Parsons,et al.  Digital Object Identifier (DOI) 10.1007/s00158-002-0216-0 , 2000 .

[22]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[23]  K. Abdel-Malek,et al.  Compliant mechanism design using multi-objective topology optimization scheme of continuum structures , 2005 .

[24]  Einar M. Rønquist,et al.  A computational procedure for part design , 1992 .

[25]  A. Saxena Synthesis of Compliant Mechanisms for Path Generation using Genetic Algorithm , 2005 .

[26]  S. Kota,et al.  Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods , 1997 .

[27]  Kwun-Lon Ting,et al.  Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory , 2005 .

[28]  Kalyanmoy Deb,et al.  A domain-specific crossover and a helper objective for generating minimum weight compliant mechanisms , 2008, GECCO '08.

[29]  Larry L. Howell,et al.  A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots , 1994 .

[30]  Seungjae Min,et al.  Topology Optimization of Compliant Mechanism with Geometrical Advantage , 2002 .

[31]  Kalyanmoy Deb,et al.  A Hybrid Multi-objective Evolutionary Approach to Engineering Shape Design , 2001, EMO.

[32]  J. Madeira,et al.  Multi-objective Topology optimization of structures , 2002 .

[33]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[34]  G. K. Ananthasuresh,et al.  On an optimal property of compliant topologies , 2000 .

[35]  K. Deb,et al.  Evolving Path Generation Compliant Mechanisms ( PGCM ) using Local-search based Multi-objective Genetic Algorithm , 2006 .

[36]  O. Sigmund,et al.  Design and fabrication of compliant micromechanisms and structures with negative Poisson's ratio , 1996, Proceedings of Ninth International Workshop on Micro Electromechanical Systems.

[37]  Kalyanmoy Deb,et al.  Towards generating diverse topologies of path tracing compliant mechanisms using a local search based multi-objective genetic algorithm procedure , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[38]  G. K. Ananthasuresh,et al.  Designing compliant mechanisms , 1995 .

[39]  Sridhar Kota,et al.  An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms , 1999 .

[40]  Estrella Veguería,et al.  A simple evolutionary topology optimization procedure for compliant mechanism design , 2007 .

[41]  Kazuhiro Saitou,et al.  Genetic algorithms as an approach to configuration and topology design , 1994, DAC 1993.

[42]  M. Jakiela,et al.  Continuum structural topology design with genetic algorithms , 2000 .

[43]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[44]  K. Tai,et al.  Structural topology optimization using a genetic algorithm with a morphological geometric representation scheme , 2005 .

[45]  Mary Frecker,et al.  Topological synthesis of compliant mechanisms using multi-criteria optimization , 1997 .

[46]  Larry L. Howell,et al.  A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms , 1996 .

[47]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[48]  A. Saxena,et al.  Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements , 2007 .

[49]  Kalyanmoy Deb,et al.  An Improved Initial Population Strategy for Compliant Mechanism Designs Using Evolutionary Optimization , 2008, DAC 2008.