Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography.

We demonstrate the depth-resolved and detailed ocular perfusion maps within retina and choroid can be obtained from an ultrahigh sensitive optical microangiography (OMAG). As opposed to the conventional OMAG, we apply the OMAG algorithm along the slow scanning axis to achieve the ultrahigh sensitive imaging to the slow flows within capillaries. We use an 840 nm system operating at an imaging rate of 400 frames/s that requires 3 s to complete one 3D scan of approximately 3 x 3 mm(2) area on retina. We show the superior imaging performance of OMAG to provide functional images of capillary level microcirculation at different land-marked depths within retina and choroid that correlate well with the standard retinal pathology.